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This paper presents a method for face recognition across variations in pose ranging
from frontal to profile views, and across a wide range of illuminations, including
cast shadows and specular reflections. To account for these variations, the algorithm
simulates the process of image formation in 3D space, using computer graphics, and it
estimates 3D shape and texture of faces from single images. The estimate is achieved
by fitting a statistical, morphable model of 3D faces to images. The model is learned
from a set of textured 3D scans of heads. We describe the construction of the mor-

phable model, an algorithm to fit the model to images, and a framework for face

identification. In this framework, faces are represented by model parameters for 3D
shape and texture. We present results obtained with 4488 images from the publicly
available CMU-PIE database, and 1940 images from the FERET database.

1 Introduction

Color values in an image of a face depend on head pose
and illumination conditions even more than on the iden-
tity of the person who is depicted. Changes in pose and
illumination are therefore the main challenges for face
recognition [39]. The goal of recognition algorithms is
to separate the characteristics of a face, which are de-
termined by the intrinsic shape and color (texture) of
the facial surface, from the random conditions of image
generation. Unlike pixel noise, these conditions may be
described consistently across the entire image by a rela-
tively small set of extrinsic parameters, such as camera
and scene geometry, illumination direction and intensity.
Methods in face recognition range within two fundamen-
tal strategies: One approach is to treat these parameters
as separate variables and model their functional role ex-
plicitly. The other approach does not formally distin-
guish between intrinsic and extrinsic parameters, and
the fact that extrinsic parameters are not diagnostic for
faces is only captured statistically.

The latter strategy is taken in algorithms that analyze
intensity images directly using statistical methods or
neural networks (for an overview, see Section 3.2 in [39]).

A separate parameter for orientation is obtained by pa-
rameterizing for each individual the manifold formed by
different views within the eigenspace of images [17], or
by defining separate view-based eigenspaces [30]. An-
other way of capturing the viewpoint dependency is to
represent faces by eigen-lightfields [18].

Two-dimensional face models represent grey values and
their image locations independently [4, 5, 19, 24, 14, 23].
However, these models do not distinguish between rota-
tion angle and shape, and only [19] separates illumina-
tion from texture. Since large rotations cannot be easily
generated by the 2D warping used in these algorithms
due to occlusions, multiple view-based 2D models have
to be combined [36, 12]. Another approach that sepa-
rates the image locations of facial features from their
appearance uses an approximation of how each feature
is deformed during rotations [27].

Complete separation of shape and orientation is
achieved by fitting a deformable 3D model to images.
Some algorithms match a small number of feature ver-
tices to image positions, and interpolate deformations of
the surface in between [22]. Others use restricted, but
class-specific deformations, which can be defined manu-
ally [25], or learned from images [11], from non-textured
[1] or textured 3D scans of heads [9].

In order to separate texture (albedo) from illumination
conditions, some algorithms derived from shape-from-
shading use models of illumination that explicitly con-
sider illumination direction and intensity for Lambertian
[16, 38] or non-Lambertian shading [35]. After analyzing
images with shape-from-shading, some algorithms use a
3D head model to synthesize novel orientations [16, 38].

In this paper, we use a combination of deformable 3D
models with a computer graphics simulation of illumi-
nation effects. This makes intrinsic shape and texture
fully independent from extrinsic parameters [9, 8]. In our
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framework, rotations in depth or changes of illumination
are very simple operations, and specular reflections and
cast shadows are easy to simulate.

Given a single image of a person, the algorithm auto-
matically estimates 3D shape, texture and all relevant
3D scene parameters. The crucial element of our ap-
proach is a morphable model of 3D faces. The model
represents shapes and textures of faces as vectors in a
high dimensional face space, and estimates their proba-
bility density. This class-specific information is learned
automatically from examples.

The automated parameter estimation includes focal
length of the camera and illumination direction, which
had to be chosen by the user in previous systems [9, §]. A
new optimization algorithm (Appendix B) and a novel
initialization procedure based on image coordinates of
between 6 and 8 feature points make the algorithm more
robust and more reliable. Currently, most face recog-
nition algorithms require either some initialization, or
they are, unlike our system, restricted to front views or
to faces that are cut out from the images.

With a single model, we are able to compensate for vari-
ations both in pose and in illumination, using only a
single image of a person for recognition. Our approach
is not restricted to Lambertian reflection, but takes into
account specular reflections, which have considerable in-
fluence on the appearance of human skin.

In the following section, we discuss different applications
of 3D shape reconstruction in face recognition systems.
Section 3 describes a method to derive a morphable face
model from 3D scans. In Section 4, we present an algo-
rithm for reconstructing 3D shape and recovering model
parameters from images. Finally, we present results ob-
tained with the image databases of CMU-PIE [34] and
FERET [31].

2 3D Shape Reconstruction for
Identification

The task of identification is to decide which individual
from a gallery of given images is shown on a novel probe
image (cf. [39]). In this paper, we consider galleries con-
sisting of a single image for each individual. Fitting the
3D morphable model to images can be used in two ways
for identification across different viewing conditions:

Paradigm 1: Identification can be based on the model
coeflicients, which represent intrinsic shape and texture
of faces independent from the imaging conditions. Prior
to identification, all gallery images are analyzed by the
fitting algorithm, and the shape and texture coeflicients
are stored (Figure 1). Given a probe image, the fitting al-
gorithm computes coefficients which are then compared
with all gallery data in order to find the nearest neigh-
bor. We apply this paradigm in Section 5.
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Figure 1: Derived from o database of laser scans, the 3D
morphable face model is used to encode gallery and probe
images. For identification, the model coefficients a;, B;
of the probe image are compared with the stored coeffi-
cients of all gallery images.

Paradigm 2: 3D face reconstruction can also be em-
ployed to generate synthetic views from gallery or probe
images for another recognition system. The second sys-
tem may be view-dependent and rely on more than
one image per person. Many applications involve stan-
dard imaging conditions defined by the view-dependent
recognition algorithm, by the way the gallery images are
taken (mug shots), or by a fixed camera setup for probe
images. After estimating standard pose and illumination
from an example image, we can generate standard views
of each individual (Figure 9). Instead of one standard
view, we can also synthesize a set of different views.

3 A Morphable Model of 3D Faces

The morphable face model is based on a vector space
representation of faces [36] that is constructed such that
any convex combination ! of shape and texture vectors
S; and T; of a set of examples describes a realistic hu-
man face:

S = iaisi, T:ibz’Ti- (1)
i=1 i=1

Continuous changes in the model parameters a; generate
a smooth transition such that each point of the initial
surface moves towards a point on the final surface. Just
as in morphing [29], artefacts in intermediate states of
the morph are avoided only if the initial and final points

To avoid changes in overall size and brightness, a; and
b; should sum to 1. The additional constraints a;, b; € [0, 1]
imposed on convex combinations will be replaced by a prob-
abilistic criterion in Section 3.4.



are corresponding structures in the face, such as the tip
of the nose. Therefore, dense point-to-point correspon-
dence is crucial for defining shape and texture vectors.
We describe an automated method to establish this cor-
respondence in Section 3.2, and give a definition of S
and T in Section 3.3.

3.1 Database of Three-Dimensional Laser Scans

The morphable model was derived from 3D scans of 100
males and 100 females, aged between 18 and 45 years.
One person is Asian, all others are Caucasian. Applied to
image databases that cover a much larger ethnic variety
(Section 5), the model seemed to generalize well beyond
ethnic boundaries. Still, a more diverse set of examples
would certainly improve performance.

Recorded with a Cyberware’™ 3030PS laser scanner,
the scans represent face shape in cylindrical coordinates
relative to a vertical axis centered with respect to the
persons’ heads. In 512 angular steps ¢ covering 360°,
and 512 vertical steps h at a spacing of 0.615mm, the
device measures radius r, along with red, green and blue
components of surface texture R, G, B. We combine ra-
dius and texture data:

L(h,¢) = (r(h,$), R(h,$),G(h,¢), B(h, )",
h,$ € {0,...,511}.

Preprocessing of raw scans involves (1) filling holes
and removing spikes in the surface with an interactive
tool, (2) automated 3D alignment of the faces with the
method of 3D-3D Absolute Orientation [20], (3) semi-
automatic trimming along the edge of a bathing cap,
and (4) two planar cuts behind the ears and at the neck.

3.2 Correspondence based on Optic Flow

The core step of building a morphable face model is to
establish dense point-to-point correspondence between
each face and a reference face. The representation in
cylindrical coordinates provides a parameterization of
the two-dimensional manifold of facial surface by pa-
rameters h and ¢. Correspondence is given by a dense
vector field v(h, @) = (Ah(h,$), Ad(h, $))T such that
each point I (h, ) in the first scan corresponds to the
point Io(h+ Ah, ¢+ A¢) in the second scan. We employ
a modified optic flow algorithm to determine this vector
field. The following two sections describe the original
algorithm and our modifications.

Optic Flow on Grey Level Images: Many optic flow
algorithms (e.g. [21, 26, 3]) are based on the assumption
that objects in motion sequences I(x,y,t) retain their
brightnesses as they move across the image at a velocity
(vz,vy)T. This implies
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For pairs of images I;,I, taken at two discrete mo-

ments, temporal derivatives v, vy, —- in Equation
(2) are approximated by finite differences Az, Ay, and
AT = I, — I;. If the images are not from a temporal se-
quence, but show two different objects, corresponding
points can no longer be assumed to have equal bright-
nesses. Still, optic flow algorithms may be applied suc-

cessfully.

A unique solution for both components of v = (v, vy)T
from Equation (2) can be obtained if v is assumed to
be constant on each neighborhood R(z¢,yo), and the
following expression [26, 3] is minimized at each point

(w0, y0):

E(xo,y0) = 3)

01(z,y)
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We used a 5x5 pixel neighborhood R(zg,yo). In each
point (xo,¥0), v(Zo,yo) can be found by solving a 2x2
linear system (Appendix A).

In order to deal with large displacements v, the algo-
rithm of Bergen and Hingorani [3] employs a coarse-to-
fine strategy using a Gaussian pyramid [2] of downsam-
pled images: With the gradient-based method described
above, the algorithm computes the flow field on the low-
est level of resolution and refines it on each subsequent
level.

Generalization to three-dimensional surfaces:
For processing 3D laser scans I(h,¢), Equation (3) is
replaced by
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with a norm
||I||2 = w,r? + wgR? + wgG? + wpB2. (5)

Weights w,., wg, wg, wp compensate for different varia-
tions within the radius data and the red, green and blue
texture components, and control the overall weighting of
shape versus texture information. The weights are cho-
sen heuristically. The minimum of Equation (4) is again
given by a 2x2 linear system (Appendix A).

Additional quantities, such as Gaussian curvature, mean
curvature, or the surface normal, may be incorporated
in I(h, ¢) to improve results. To obtain reliable results
even in regions of the face with no salient structures, a
specifically designed smoothing and interpolation algo-
rithm (Appendix A.1) is added to the matching proce-
dure on each level of resolution.
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Figure 2: For scans parameterized by cylindrical coordi-

nates (h, ), the flow field that maps each point of the

reference face (top) to the corresponding point of the ex-

gmpl(ej (Tbottom) is used to form shape and texture vectors
and T.

3.3 Definition of Face Vectors

The definition of shape and texture vectors is based on
a reference face Iy, which can be any three-dimensional
face model. Our reference face is a triangular mesh
with 75972 vertices derived from a laser scan. Let
the vertices k € {1,...,n} of this mesh be located at
(hk, Pk, r(hg, dr)) in cylindrical and at (xg,yk,2x) in
Cartesian coordinates, and have colors (Ry, Gy, Bg).
Reference shape and texture vectors are then defined

b
Y SO = (mlayhzl)er' ')xnayn7zn)T7 (6)
To = (R1,G1,B1,Ra, ..., Ry, Gn, Bn)T. (7)

To encode a novel scan I (Figure 2, right), we com-
pute the flow field from Iy to I, and convert I(h', ¢') to
Cartesian coordinates z(h',¢'), y(h',¢'), z(W',¢'). Co-
ordinates (xg,yx,2r) and color values (Ry, Gy, By) for
the shape and texture vectors S and T are then sampled
at hy, = hi, + Ah(hg, k), @) = bk + Vg (hi, ).

3.4 Principal Component Analysis

We perform a Principal Component Analysis (PCA, see
[13]) on the set of shape and texture vectors S; and
T; of example faces i = 1...m. Ignoring the correlation
between shape and texture data, shape and texture are
analyzed separately.

For shape, we define a data matrix A = (aj,as,...,an)
. I P
after subtracting the average s = p— ZSZ- from each

i=1
shape vector, a; = S; —§.

The eigenvectors s, Sa, . . . of the covariance matrix C =

1 1 —
—AAT = — Z a,-a,T can be calculated by a Singular
m mia
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Figure 3: The average and the first two principal com-
ponents of o dataset of 200 3D face scans, visualized by
adding +30s;s; and +3o7;t; to the average face.

Value Decomposition [32] of A. The eigenvalues of C,
0%, > 0%, > ..., are the variances within the data set
along each eigenvector.

By the same procedure, we obtain texture eigenvectors
t; and variances a%,z-. Results are visualized in Figure 3.
The eigenvectors form an orthogonal basis,

m—1 m—1
S:§+Za,~-s,’, T:E-i-z,gi-ti (8)
=1 i=1

and PCA provides an estimate of the probability density

within face space:

2 2
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ps(S)~e ~TiEi L pp(T)~e THRil (9)

3.5 Segments

From a given set of examples, a larger variety of different
faces can be generated if linear combinations of shape
and texture are formed separately for different regions of
the face. In our system, these regions are the eyes, nose,
mouth and the surrounding area [9]. Once manually de-
fined on the reference face, the segmentation applies to
the entire morphable model.

For continuous transitions between the segments, we ap-
ply a modification of the image blending technique of
[10]: z,y,z coordinates and colors R,G, B are stored
in arrays z(h, @), ... based on the mapping i — (h;, ¢;)
of the reference face. The blending technique interpo-
lates z,y, 2z and R,G, B across an overlap in the (h, ¢)-
domain which is large for low spatial frequencies, and
small for high frequencies.
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Figure 4: The goal of the fitting process is to find shape
and texture coefficients o; and B; describing a three-
dimensional face model such that rendering R, produces
an 1mage Inoqe that is as similar as possible to Lippyt.

4 Model-Based Image Analysis

Model-based image analysis represents a novel face by
model coefficients «; and 3; (Equation 8), and provides
a reconstruction of 3D shape. Moreover, it automat-
ically estimates all relevant parameters of the three-
dimensional scene, such as pose, focal length of the cam-
era, light intensity, color and light direction.

In an analysis-by-synthesis loop, the algorithm finds
model parameters and scene parameters such that the
model, rendered by computer graphics algorithms, pro-
duces an image as close as possible to the input im-
age Linpy (Figure 4).2 The iterative optimization starts
from the average face and standard rendering conditions
(front view, frontal illumination, full color contrast, Fig-
ure 5).

For initialization, the system currently requires image
coordinates of about 7 facial feature points, such as the
corners of the eyes or the tip of the nose (Figure 5).
With an interactive tool, the user defines these points
j =1...7 by alternately clicking on a point of the refer-
ence head to select a vertex k; of the morphable model,
and on the corresponding point g, ;,gy,; in the image.
Depending on what part of the face is visible in the im-
age, different vertices k; may be selected for each image.
Some salient features in images, such as the contour line
of the cheek, cannot be attributed to a single vertex of
the model, but depend on the particular viewpoint and
shape of the face. The user can define such points in the
image and label them as contours. During the fitting
procedure, the algorithm determines potential contour
points of the 3D model based on the angle between sur-
face normal and viewing direction, and selects the clos-
est contour point of the model as k; in each iteration.

The following section summarizes the synthesis frame-
work that creates an image from the model, and then
discusses how the model parameters are estimated.

Figure 4 is illustrated with linear combinations of exam-
ple faces according to (1) rather than principal components
(8) for visualization.
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Figure 5: The process of face reconstruction from a sin-
gle image (top, left) and a set of feature point coordi-
nates (top, center). Starting from standard pose and il-
lumination (top, right), the algorithm computes a rigid
transformation and a conservative deformation to fit the
feature points. Then, illumination is estimated. In sub-
sequent iterations, shape, texture, transformation and il-
lumination are optimized for the entire model, and for
each segment separately (second row). From the full re-
construction, novel views can be generated (bottom row).

4.1 Image Synthesis

The three-dimensional positions and the color values of
the model’s vertices are given by the coefficients «; and
B; and Equation (8). Rendering an image includes the
following steps:

4.1.1 Image positions of vertices

A rigid transformation maps the object-centered coor-
dinates xj, = (zx, Y, zx) " of each vertex k to a position
relative to the camera:

(wwyk ’ wyvk ’ wzyk)T = R7R9R¢Xk + t’l.l)' (10)

The angles ¢ and 6 control in-depth rotations around
the vertical and horizontal axis, and -y defines a rotation
around the camera axis. t,, is a spatial shift.

A perspective projection then maps vertex k to image
plane coordinates p;  , Py.i:

Wa,k Wy, k
pz,kZPa:'i'fL; py,k:Py_f Y - (11)
Wz k We,k
f is the focal length of the camera which is located in
the origin, and (P,, P,) defines the image-plane position
of the optical axis (principal point).



4.1.2 Illlumination and Color

Shading of surfaces depends on the direction of the sur-
face normals n. The normal vector to a triangle ky koks
of the face mesh is given by a vector product of the
edges, (Xg, — Xky) X (Xp, — Xy ), which is normalized to
unit length, and rotated along with the head (Equation
10). For fitting the model to an image, it is sufficient to
consider the centers of triangles only, most of which are
about 0.2mm? in size. 3D coordinate and color of the
center are the arithmetic means of the corners’ values.
In the following, we do not formally distinguish between
triangle centers and vertices k.

The face is illuminated by ambient light with red, green,
and blue intensities Ly gmt, Lg,ambs Lb,amb, and by di-
rected, parallel light with intensities L, gir, Lg, dir, Lp,dir
from a direction defined by two angles ; and ¢;:

1 = (cos(6;) sin(¢;), sin(6;), cos(6;) cos(¢))?.  (12)

The illumination model of Phong (see [15]) approxi-
mately describes the diffuse and specular reflection on a
surface. On each vertex k, the red channel is

Lr,k =Ry - Lr,amb + Ry - Lr,dz’r : (nky 1)
+ kg - Ly gir (tr, V)" (13)

where Ry, is the red component of the diffuse reflection
coeflicient stored in the texture vector T, k; is the spec-
ular reflectance, v defines the angular distribution of
the specular reflections, vy, is the viewing direction, and
rr = 2-{ng,1) ng —1 is the direction of maximum spec-
ular reflection [15].

Input images may vary a lot with respect to the overall
tone of color. In order to be able to handle a variety
of color images as well as grey level images and even
paintings, we apply gains g, g4, g5, offsets o, 04, 05, and
a color contrast ¢ to each channel. The overall luminance
L of a colored point is [15]

L=03-L,+0.59-L,+0.11- L. (14)

Color contrast interpolates between the original color
value and this luminance, so for the red channel we set

I, = g,(cL, + (1 =¢)L) + o,. (15)

Green and blue channels are computed in the same way.
The colors I, I, and I are drawn at a position (ps,py)
in the final image I,;,04¢;-

Visibility of each point is tested with a z-buffer algo-
rithm, and cast shadows are calculated with another z-
buffer pass relative to the illumination direction (see for
example [15].)

4.2 Fitting the Model to an Image

The fitting algorithm optimizes shape coefficients o =
(a1,9,...)T and texture coefficients 8 = (81, Ba,...)T
along with 22 rendering parameters, concatenated into
a vector p: pose angles ¢, # and -y, 3D trans-
lation t,, focal length f, ambient light intensi-
ties Lr.amb, Lg,amb, Lbamp, directed light intensities
Ly qir, Lg,dirs Lb,qir, the angles 6; and ¢; of the the di-
rected light, color contrast ¢, and gains and offsets of
color channels g,, g4, 95, Or, 0g, Op.

4.2.1 Cost Function

Given an input image

Linput (2, 9) = (I (2, 9), I, (z,y), Iy (z,9))",

the primary goal in analyzing a face is to minimize the
sum of square differences over all color channels and all
pixels between this image and the synthetic reconstruc-
tion,

Ep = Z ||Iinput(m7 y) — Linodet (-1'7 y)||2 . (16)
z’y

The first iterations exploit the manually defined feature
points (gz,j,qy,;) and the positions (pg k;,py,x;) of the
corresponding vertices k; in an additional function

_ qz,j Dz k; 2
sesi()-Ga)e o
Minimization of these functions with respect to a, 3, p
may cause overfitting effects similar to those observed
in regression problems (see for example [13]). We there-
fore employ a maximum a posteriori estimator (MAP)
derived from a Bayesian approach [9]. Given the input
image Linpyt and the feature points F', the task is to find
model parameters with maximum posterior probability
p(a, B, p | Linput, F). According to Bayes rule,

p(aaﬂapl IinputyF) ~
p(Iinput;F|a7ﬂap) 'P(aaﬂ;p)' (18)

If we neglect correlations between some of the variables,
the right hand side is

p(Iinput | aaﬂap)'p(F|aaﬂap)'P (C\!)P (,B)P (p)(lg)

The prior probabilities P(«) and P(3) were estimated
with PCA (Equation 9). For P(p), we assume a normal
distribution, and use the starting values for p, and ad
hoc values for op,;.

For Gaussian pixel noise with a standard deviation
or, the likelihood of observing Linput, given o, 3, p, is

p(Iinput|a7/B7p) ~ emp(;?

I
ture point coordinates may be subject to noise, and
p(Fla, B, p) ~ exp(5— - En).

- Er). In the same way, fea-
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Posterior probability is then maximized by minimizing

E=-2 -logp(a;ﬂ;p|linputaF)
1 1

E = —2E1 + _2EF
o1 OF

2 2 5.2
+ Z ;;z + Z B; + Z (plaﬂil) ) (20)

2
PRCR] 01

Ad-hoc choices of o1 and of are used to control the rel-
ative weights of Ey, Er, and the prior probability terms
n (20). At the beginning, prior probability and Er are
weighted high. The final iterations put more weight on
E;, and no longer rely on Er.

4.2.2 Optimization Procedure

For each iteration of the optimization process, the fit-
ting algorithm analytically computes the gradient of the
cost function (20) . The derivatives are summarized in
Appendix C.

The optimization algorithm is a stochastic version of
Newton’s method (Appendix B, cf. [23]): Since contri-
butions of the pixels of the entire image might be re-
dundant, the algorithm selects 40 random triangles at
each iteration, and evaluates Er and its gradient only at
their centers. This does not only speed up the optimiza-
tion, but also avoids local minima by searching a larger
portion of parameter space.

The random selection is implemented such that the
probability of selecting a particular triangle is propor-
tional to its area in the image. The expectation value of
the approximate cost function is therefore equal to the
full cost function (20). Areas of triangles are determined
along with occlusions and cast shadows at the beginning
of the process, and once every 1000 iterations, by ren-
dering the entire face model.

The first iterations only optimize the first parameters
a;, Bi,1 € {1,...,10} and all parameters p;. Subsequent
iterations consider more and more coefficients. From the
principal components of a database of 200 faces, we only
use the most relevant 99 coefficients «;, B;. After fit-
ting the entire face model to the image, the eyes, nose,
mouth, and the surrounding region (section 3.5) are op-
timized separately. The fitting process takes 4.5 minutes
on a workstation with a 2GHz Pentium 4 processor.

5 Results

Model fitting and identification were tested on two pub-
licly available databases of images. The individuals in
these databases are not contained in the set of 3D scans
that form the morphable face model (Section 3.1).

The colored images in the PIE database from CMU [34]
vary in pose and illumination. We selected the portion
of this database where each of 68 individuals is pho-
tographed from 3 viewpoints (front, side, and profile,

AN N X

Figure 6: Up to 7 features points were manually labeled
in front and side views, up to 8 in profile views.

labeled as camera 27, 05, 22) and at 22 different illumi-
nations (66 images per individual). Illuminations include
flashes from different directions, and one condition with
ambient light only.

From the grey-level images of the FERET database [31],
we selected a portion that contains 11 poses (labeled ba
— bk) per individual. We discarded pose bj, where partic-
ipants have various facial expressions. The remaining 10
views, most of them at a neutral expression, are avail-
able for 194 individuals (labeled 01013 — 01206). While
illumination in images ba — bj is fixed, bk is recorded at
a different illumination.

Both databases cover a wide ethnic variety. Some of the
faces are partially occluded by hair, and some individu-
als wear glasses (28 in the CMU-PIE database, none in
the FERET database.) We do not explicitly compensate
for these effects. Optimizing the overall appearance, the
algorithm tends to ignore image structures that are not
represented by the morphable model.

5.1 Results of Model Fitting

The reconstruction algorithm was run on all 4488 PIE
and 1940 FERET images. For all images, the starting
condition was the average face at a front view, with
frontal illumination, rendered in color from a viewing
distance of 2 meters (Figure 6).

On each image, we manually defined between 6 and 8
feature points (Figure 6). For each viewing direction,
there was a standard set of feature points, such as the
corners of the eyes, the tip of the nose, corners of the
mouth, ears, and up to 3 points on the contour (cheeks,
chin, and forehead). If any of these were not visible in
an image, the fitting algorithm was provided with less
point coordinates.

Results of 3D face reconstruction are shown in Figures
7 and 8. The algorithm had to cope with a large vari-
ety of illuminations. In the third column of Figure §,
part of the specular reflections were attributed to tex-
ture by the algorithm. This may be due to shortcomings
of the Phong illumination model for reflection at graz-
ing angles, or to a prior probability chosen such that
illumination from behind is penalized.

The influence of different illuminations is shown in a
comparison in Figure 9. The fitting algorithm adapts
to different illuminations, and from the reconstructions,
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Figure T: Reconstructions of 3D shape and texture from FERET images (top row). In the second row, results are
rendered into the original image with pose and illumination recovered by the algorithm. The third row shows novel
views.

Angular distance | front to | front to | side to
side | profile | profile

Average Estimate 18.1° 63.2° 45.2°
Standard Deviation 2.4° 4.6° 4.5°
True Angle 16.5° 62.1° 45.6°

Table 1: The precision of pose estimates in terms of the rota-
tion angle between two views for each individual in the CMU-
PIE database. Angles are a 3D combination of ¢, 6, and 7.
The table lists averages and standard deviations, based on 68
individuals, for illumination number 13. True angles are com-
puted from the 3D coordinates provided with the database.

standard images with fixed illumination can be gen-
erated. In Figure 9, the standard illumination condi-
tions are the estimates obtained from a photograph (top
right).

For each image, the fitting algorithm provides an esti-
mate of pose angle. Heads in the CMU-PIE database
are not fully aligned in space, but since front, side, and
profile images are taken simultaneously, the relative an-
gles between views should be constant. Table 1 shows
that the error of pose estimates is within a few degrees.

5.2 ldentification From Model Coefficients

For identification according to paradigm 1 described in
Section 2, we represent shape and texture by a set of
coefficients & = (aq,...,ag9)T and B = (Bi,...,B00)"

for the entire face, and one set a, 8 for each of the four
segments of the face (Section 3.5). Rescaled according
to the standard deviations og;, o7,; of the 3D examples
(Section 3.4), we combine all of these 5 -2 -99 = 990

! to a vector ¢ € IR,

. (273
coefficients ,
05i OT,i

Comparing two faces ¢; and ca, we might use the sum of
Mahalanobis distances [13] of the segments’ shapes and
textures, dy; = ||c; — ¢1||>. However, recognition perfor-
mance is higher if we use the cosine of the angle between
{c1,c2)

sl - fleall

Model coefficients recovered from different images of
the same person are affected by a number of sources
of variation: Parameters of the fitting problem may be
ambiguous, such as skin complexion versus intensity
of illumination, illumination effects are not fully cap-
tured by our lighting model, and optimization may have
residual errors. Estimated from the CMU-PIE database,
we apply these variations to the FERET images, and
vice versa, using a method motivated by Maximum-
Likelihood Classifiers and Linear Discriminant Analy-
sis (see [13]): Deviations of each persons’ coefficients ¢
from their individual average are pooled and analyzed by
PCA. The covariance matrix Cy of this within—subject
variation then defines

e, e)y
lleallyy - llezlly

with <C1,C2)W = <Cl,CI7VlC2> .

two vectors [7, 28]: da =

dw (21)



Figure 8: 3D reconstructions from CMU-PIE images. Top: originals, middle: reconstructions rendered into original,
bottom: novel views. The pictures shown here are difficult due to harsh illumination, profile views, or eye glasses.
llumination in the third image is not fully recovered, so part of the reflections are attributed to texture.

| Database | dymr | da | dw |
CMU-PIE | 87.2% | 94.2% | 95.0%
FERET | 80.3% | 92.2% | 95.9%

Table 2: Overall percentage of successful identifications for
different criteria of comparing faces. For CMU-PIE images,
data were computed for the side view gallery.

5.3 Recognition Performance

For evaluation on the CMU-PIE dataset, we used a
front, side, and profile gallery, respectively. Each gallery
contained one view per person, at illumination number
13. The gallery for the FERET set was formed by one
front view (pose ba) per person. The gallery and probe
sets are always disjoint, but show the same individuals.

Table 2 provides a comparison of dys, d4, and dw for
identification (Section 2). dw is clearly superior to das
and d4. All subsequent data are therefore based on dyy .

A detailed comparison of different probe and gallery
views for the PIE database is given in Table 4. In an
identification task, performance is measured on probe
sets of 68 - 21 images if probe and gallery viewpoint is
equal (yet illumination differs; diagonal cells in the ta-
ble), and 68 - 22 images otherwise (off-diagonal cells).
Overall performance is best for the side-view gallery.

Table 3 lists the percentages of correct identifications on
the FERET set, based on front view gallery images ba,
along with the estimates of head pose obtained from fit-
ting. Figure 10 shows face recognition ROC curves [13].
For the CMU-PIE database, gallery images were side
views (camera 05, light 13), the probe set were all 4420

| probe view || pose ¢ | correct identification |

ba 1.1° (gallery)
bb 38.9° 94.8%
be 27.4° 95.4%
bd 18.9° 96.9%
be 11.2° 99.5%
bf -7.1° 97.4%
by -16.3° 96.4%
bh —26.5° 95.4%
bi —37.9° 90.7%
bk 0.1° 96.9%
[ total | | 95.9% |

Table 3: Mean identification percentages on the FERET
dataset. The gallery images were front views ba. ¢ is the
average estimated azimuth pose angle of the face. Ground
truth for ¢ is not available. Condition bk has different illu-
mination than the others.

other images. For FERET, front views ba were gallery,
and all other 1746 images were probe images.

6 Conclusions

In this paper, we have addressed three issues: (1) Learn-
ing class-specific information about human faces from a
dataset of examples, (2) Estimating 3D shape and tex-
ture, along with all relevant 3D scene parameters, from
a single image at any pose and illumination, and (3)
Representing and comparing faces for recognition tasks.
Tested on two databases of images covering large vari-
ations in pose and illumination, our algorithm achieved
promising results.



Figure 9: In 3D model fitting, light direction and intensity is estimated automatically, and cast shadows are taken into
account. The figure shows original PIE images (top), reconstructions rendered into the image (second row), and the
same reconstructions rendered with standard illumination (third row) taken from the top right image.

probe view gallery view
front | side | profile
front 99.8%  (97.1-100) | 99.5% (94.1-100) | 83.0% (72.1-94.1)
side 97.8% (82.4-100) | 99.9% (98.5-100) | 86.2% (61.8-95.6)
profile 79.5% (39.7-94.1) | 85.7% (42.6-98.5) | 98.3% (83.8-100)
[ total ] 92.3 % | 95.0 % | 89.0 % |

Table 4: Mean identification percentages on the CMU-PIE dataset, averaged over all lighting conditions for front, side and
profile view galleries. In brackets are percentages for the worst and best illumination within each probe set.

It is straightforward to extend our morphable model to
different ages, ethnic groups, and facial expressions, by
including face vectors from more 3D scans. Our system
currently ignores glasses, beards or strands of hair cov-
ering part of the face, which are found in many images
of the CMU-PIE and FERET sets. Considering these ef-
fects in the algorithm may improve 3D reconstructions
and identification.

Future work will also concentrate on automated initial-
ization and a faster fitting procedure. In applications
that require a fully automated system, our algorithm
may be combined with an additional feature detector.
For applications where manual interaction is permissi-
ble, we have presented a complete image analysis sys-
tem.
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A Optic Flow Calculation

Optic flow v between grey-level images at a given point
(20, yo) can be defined as the minimum v of a quadratic
function (Equation 3). This minimum is given by [26, 3]

Wv =-b (22)

(Zzai I; Izza(;[(z I)’

v (i)

v is easy to find by means of a diagonalization of the
2x2 symmetrical matrix W.

For 3D laser scans the minimum of Equation (4) is again
given by (22), but now

( DNE23 (/3 & 8¢I)>
Y (0L, 0T) Y lI06III”

(D (a1, AT)
b= (Z@I, NV (2)

using the scalar product related to (5). v is found by
diagonalizing W.

A.1 Smoothing and Interpolation of Flow Fields

On regions of the face where both shape and texture
are almost uniform, optic flow produces noisy and unre-
liable results. The desired flow field would be a smooth
interpolation between the flow vectors of more reliable
regions, such as the eyes and the mouth. We therefore
apply a method that is motivated by a set of connected
springs, or a continuous membrane, that is fixed to re-
liable landmark points, sliding along reliably matched
edges, and free to assume a minimum energy state ev-
erywhere else. Adjacent flow vectors of the smooth flow
field v (h, ¢), are connected by a potential

=Y S V(b4 1,6) = va(h, )|

ho¢

+ 3P v+ ) = v D)I*. (24)
h ¢

The coupling of vs(h,¢$) to the original flow field
vo(h,$) depends on the rank of the 2x2 matrix W in
(23), which determines if Equation (22) has a unique
solution or not: Let Ay > Ay be the two eigenvalues of
W, and a;, a be the eigenvectors. Choosing a threshold
s > 0, we set

0 if )\1,)\255

<ala Vs(h,¢) - VO(hJ¢) >2 if A1 2 s 2 AQ
Vs (hy @) — vo(hy @17 if M, Aa > s

EO (ha ¢) =

12

In the first case, which occurs if W ~ 0 and O,1,0;1 ~ 0
in R, the output vs will only be controlled by its neigh-
bors. The second case occurs if (22) restricts v only in
one direction a;. This happens if there is a consistent
edge structure within R, and the derivatives of I are lin-
early dependent in R. v, is then free to slide along the
edge. In the third case, vo is uniquely defined by (22),
and therefore v, is restricted in all directions. To com-
pute vs, we apply Conjugate Gradient Descent [32] to
minimize the energy

E=nE.+ Y Eo(h,¢).
h,¢

Both the weight factor n and the threshold s are cho-
sen heuristically. During optimization, flow vectors from
reliable, high-contrast regions propagate to low-contrast
regions, producing a smooth interpolation. Smoothing is
performed at each level of resolution after the gradient-
based estimation of correspondence.

B Stochastic Newton Algorithm

For the optimization of the cost function (20), we de-
veloped a stochastic version of Newton’s algorithm [6]
similar to stochastic gradient descent [33, 37, 23]. In each
iteration, the algorithm computes E; only at 40 random
surface points (Section 4.2). The first derivatives of E
are computed analytically on these random points. The
derivatives are given in Appendix C.

Newton’s method optimizes a cost function E with re-
spect to parameters a;; based on the gradient VE and

O*E
the Hessian H, H; ; = 900
;00

. The optimum is

a*=a-H'VE. (25)
For simplification, we consider «; as a general set of

model parameters here, and suppress (3, p. Equation
(20) is then

Bla) = 5 Ei(e) + 5 Brla) + 3 @23 (o)
O i Us,i

o1
and
VE= 1 ‘;ff UIF %if + dia (Uii)(a —@). (@7)
The diagonal elements of H are
2 2
H;; = Ui%aaaE%I é 6855 %. (28)

These second derivatives are computed by numerical dif-
ferentiation from the analytically calculated first deriva-
tives, based on 300 random vertices, at the beginning of
the optimization and once every 1000 iterations. The



Hessian captures information about an appropriate or-
der of magnitude of updates in each coefficient. In the
stochastic Newton algorithm, gradients are estimated
from 40 points, and the updates in each iteration do not
need to be precise. We therefore ignore off-diagonal ele-
ments (see [6]) of H, and set H™' ~ diag(1/H; ;). With
Equation (25), the estimated optimum is

1 8%E; . 1 82Ep ._ 1 8E;| _ 1 8Ep 2 —
o7 ga? @it 57 el i Ff dai |q T 77 dai g T 72
L82E1 82EF 2
oZ da? + 2 8a? + o2,

In each iteration, we perform small steps a— o +
AMa* — ) with a factor A < 1.

C Derivatives of E;

In this section, we give the derivatives of Er (Equation
16) by the model coefficients «;. Derivatives of the other
contributions to the cost function (20) and for the coef-
ficients 3;, p; are calculated in a similar way.

Rendering is a composition of many operations. Our
implementation introduces variables for intermediate
derivatives that are substituted on the next level, us-
ing chain rule. Summarizing over all randomly selected
vertices k and color channels f =r,g,b,

OEy
e = 22 Z (If,z'nput (pz,k;py,k) - If,model,k)
! k f=rg}b

0 i)
. (@If,input (pm,lmpy,k) - a_z,‘[ﬁmodel,k) ,

aIf,input 6pz,k 6If,input 6py,k

S P ) = +
80{7; frinput pz,kapy,k — or 6&,‘ 6:1] aai -

Derivatives at image positions (pg k,py,k) are

oz’ dy
computed by a sobel operator.
Starting from the first steps of the rendering process,

the derivative of the linear combination of basis shapes

oS

(8) is 9, = Si» 80 for the corners xXj,, Xg,, Xz, of a
(2

ox
triangle, we can simply look up B, kl . in s;. For the
ox 1,0x ox ax
center Xy, , — = ( 5 al 3 k> ks) Derivatives
: o i

of rigid transformatlon (10) and perspectlve projection
(11) are

owy, Oxy,

ro_ 2
Ba, =R R9R¢8 (29)
0Dz k 1 Owg .k ow, 1,

Y = = — .k — P, :
Oa; Wk ( Oa; (Pa ) Oa; ) (30)

Opy
Baj
not only control the image positions (pg k,py,k) of ver-
tices k, but due to the changes in surface normals,
they also affect the vertex colors Iy moger,k- Calculat-
ing the normal vector of the triangle involves three

is calculated in the same way. Shape coefficients

steps 0 = (X, — Xg,) X (Xpy — Xpy), 0= m, n=
R, RyR,0i  with derivatives B
On _ Oxp, Oxp,
60&,‘ a ( 80,’ 60&,’ ) X (Xkl ng)
6Xk1 6xk3
- - 1
+ ey — 1) x (e - S5 (31)

on

on _ 1 3 ]
g = Il 52~ all=* (32.n) -
On
_ 1 n n .\ .
= ||~ <aa, (s2a)m
on on
da; ~ ToReRez

The direction of reflection changes according to

6I'k o 2<6nk

da, ~ 2\ 3a,

,1> ny, + 2 (ny, ) % (32)
J

. . 0x o
We ignore the influence of ZZF on the viewing direction

Oa
Vi. Then, Phong illumination (13) yields for the red

channel

OLr Ry Lo <% 1>

Baj 60tj ’

~ \U— ark ~
+ks'L’r‘,di’r"V'<rk7vk> 1'<—Jvk> (33)
Oaj

Finally, the derivative of the color transformation
(14),(15) for f =r,g,bis

oI oL
fymodel,k — gf(C f

+(1-2¢
(07} a;
oL oL oL
- (0.3- =L +0.59 - —£ +0.11- —2)).
o5 Q; a;
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