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Based on the assumption that a class of objects or data can be represented as a vector
space spanned by a set of examples, we present a general method to estimate vector
components of a novel vector, given only a subset of its dimensions.

We apply this method to recover 3D shape of human faces from 2D image positions
of a small number of feature points. The application demonstrates two aspects of the
estimation of novel vector components: (1) From 2D image positions, we estimate
3D coordinates, and (2) from a small set of points, we obtain vertex positions of a
high-resolution surface mesh. We provide an evaluation of the technique on laser scans
of faces, and present an example of 3D shape reconstruction from a photograph.
Our technique involves a tradeoff between reconstruction of the given measurements,
and plausibility of the result. This is achieved in a Bayesian approach, and with a

statistical analysis of the examples.

1 Introduction

Arguments by analogy are a useful mode of reasoning
if we lack sufficient information about a problem for
a rigirous conclusion, but are provided with many in-
stances of solutions for similar settings. In this paper,
we address the problem of estimating the components
of a vector, given only some of the components’ values.
More generally, the input may be the result of any lin-
ear mapping to a lower dimensional space. The prior
knowledge that helps to solve this ill-posed problem is
represented by a set of examples of vectors, and the as-
sumption that any novel solution is in the span of these
examples. Moreover, we exploit the statistical properties
of the examples to obtain an estimate of prior probabil-
ity. The correlation of vector components within the set
of examples is the core property that makes an estimate
of unknown vector components possible.

As an example of a vector space of objects, we apply
our method to the geometry of faces. The morphable
face model approach [1] provides a representation of
facial shapes in terms of shape vectors, such that any
linear combination of vectors describes a realistic face.
Shape vectors are defined by concatenating the z, y, and
z coordinates of a large set of surface points to a sin-
gle, high-dimensional vector. The technique for selecting
these surface points on individual faces ensures that each
component of the shape vector refers to corresponding
points on all faces, such as the tip of the nose.

In this paper, we estimate full 3D structure of a face

from 2D image positions of a subset of the morphable
model’s vertices. Image positions are taken from a front
view of the face, and with orthographic projection. How-
ever, the system can also be applied to any other viewing
direction, or a combination of views. Restricted to linear
mappings of the original data, the system cannot handle
perspective projection from close viewpoints. For larger
distances, the difference between perspective and ortho-
graphic projection decreases, and our technique provides
realistic results.

The morphable face model has previously been used to
estimate 3D shape from a single image [1]. Comparing
color values of the image with those obtained from the
model, this system iteratively matches the morphable
model to the image. Similar to the approach presented
here, the system relies on the vector space structure
of faces for estimating 3D structure. However, it also
exploits shading information from the image. Matching
the entire facial surface to the image, the result recovers
many facial details. In contrast, the method presented
here relies only on a relatively small set of feature points
provided by the user. However, the matching problem
solved here is computationally much simpler, and can
be solved in a single step in a robust way. Therefore,
the algorithm is considerably faster and may be applied
in interactive tools for face reconstruction.

We extend and generalize a method that has been ap-
plied to estimate dense optic flow fields in image data
[4], using a data set of flow vectors obtained by a 2D
projection of a 3D morphable face model. The modifi-
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cation presented in this paper makes the system more
robust, which proves to be crucial to achieve high overall
quality of the estimate.

The problem addressed in this study is related to the
statistical problem of regression. In regression, a set of
measurements (x;,y;) of a random variable y for differ-
ent values of the known parameter z is used to estimate
the expectation value y(z) at any z. Regression tech-
niques select a function y from a family of functions,
which can be linear mappings, polynomials, or any other
function space. If the capacity of the function space is
too large, some methods produce overfitting effects (see
[2]): the function fits the measurements precisely, but
varies drastically in between, rather than being smooth.
The desired generalization of y(z) to novel values of x
tends to be poor.

As we demonstrate in Section 6, a similar effect may
occur here, if the low-dimensional input vector is sub-
ject to noise or other sources of error, or if the desired
solution cannot be entirely captured by the model.

To overcome the problem of overfitting, most regression
techniques impose a smoothness constraint on the so-
lution, or restrict the family of functions [7, 2]. In our
approach, we restrict solutions to the span of a set of ex-
amples, and impose an additional penalty on solutions
far from the observed average. The result will be a trade-
off that is both plausible a priori, and still fits the given
measurements well.

In the following section, we give a definition of object
classes in terms of a probabilistic criterion for class mem-
bership. Section 3 presents a direct approach to estimat-
ing vector components from sparse data. Section 4 de-
rives a framework to avoid overfitting and accomodate
noisy measurements. Section 5 discusses a special case
that relates the theory to a straightforward projection
into the span of examples. In Section 6, we present re-
sults obtained with 3D models of faces.

2 Representation of Class-Specific
Knowledge

We assume that the examples of class elements
v; € R", i=1,....m (1)

are given in a vector space representation such that lin-
ear combinations

vV = Z a;Vv; (2)
i=1

describe new elements of the class. However, the coeffi-
cients of the linear combinations must be restricted by

additional conditions to ensure realistic results.!

An estimate of the prior probability of vectors within
the span of examples can be obtained by a Principal
Component Analysis (PCA, see [3]). The original data
are centered around the origin by subtracting the arith-
metic mean

1 m
X; =V; —V, EZ i (3)

and concatenated to a data matrix

X = (x1,X2,...,Xp) € R™*™, 4)

The covariance matrix of the data set is given by

C= —xxT ZXJ x! € R™™, (5)

PCA is based on a diagonalization of the covariance ma-
trix,

C =S -diag(c?) - ST. (6)
Since C 1is symmetrical, the columns s; of S =
(s1,82,...) form an orthogonal set of eigenvectors. oy >
o9 > ...> 0, are the standard deviations within the
data along each eigenvector s;. The diagonalization of
C can be calculated by a Singular Value Decomposition
(SVD, [5]) of X.

Having subtracted the arithmetic mean, the m vectors
x; are linearly dependent, so their span is at most m' =
(m—1) dimensional, and the rank of X and C is at most
m'. Therefore, o,, = 0, and s,, is irrelevant.

In the following, we use the eigenvectors as a basis,
X = Z ciois; = S - diag(o;)c. (7
i=1

An important property of PCA is that variations along
the eigenvectors are uncorrelated within the set of ex-
amples. Assuming a normal distribution in each of the
directions, the probability density at x is

m m'

Co1 sk (s %)? 1 .
X) = e = e_Eci 8
p(x) =1 V2ro; zl;[1 V2ro; ®
-1 e )

@)™ 2T, 0:

! (Coefficients might be constrained to the convex hull by
m

a; € [0,1] and Z a; = 1. The first constraint is replaced here

i=1
by a probabilistic measure. The second is enforced implicitly
by forming hnea.r combinations relative to v: Any llnea.r com-

bination v = Z bix; +V can be shown to satisfy Zaz =1

i=1 i=1
in terms of (2) and (3).



The probability density for ¢ can be rescaled to

I

p(c) = v, -e 3l v, = (2m) ™2 (10)

The exponent ||c||? is often referred to as Mahalanobis
Distance.

3 Incomplete Measurements

Given a measurement r € R, | < n, we would like to
find the full vector x € IR" such that

r=Lx (11)

with a mapping L : R" — R'.L canbe any linear trans-
formation, and does not need to be a projection.

If L is not a one-to-one mapping, the solution (11) is not
uniquely defined. Therefore, we restrict the admissible
solutions to the span of x;. As we cannot expect to find
a linear combination of the examples that solves (11)
exactly, we compute a vector x that minimizes

E(x) = ||Lx - r|]%. (12)

Let q; = o;Ls; € R' be the reduced versions of the
scaled eigenvectors, and
Q= (a1,9,-) = LS - diag(:) € R™™. (13)

In terms of model parameters ¢;, Equation (12) is

- ||1,Zc,a,sz —r|? = Zczqz —rf>  (14)
= IIQc —r*. (15)

The optimum can be found by a Singular Value Decom-
position [5]

Q=Uuwv” (16)

with a diagonal matrix W = diag(w;), and VIV =
VVT = id,y.

The pseudoinverse (see [6]) of Q is

Qt =vwtuT, (17)
-1 .
T g w;  ifw; #0
wr= dzag( 0 otherwise |’ (18)

To avoid numerical problems, the condition w; # 0 may
be replaced by a threshold. The minimum of (15) is

c=Q"r, (19)

which is optimal in two respects [6]:

1. ¢ minimizes E, so for all ¢/, E(c') > E(c).

2. Among the set of solutions {c'|E(c’) = E(c)}, ¢ has
minimum norm ||c|| and thus maximum prior proba-
bility (Equation 10).

By Equation (3) and (7), ¢ is mapped to R™:
v =S8 -diag(o;)c + V. (20)

For solving Equation (11), it might seem more straight-
forward to compute the pseudoinverse of L and set x =
L*r. However, among vectors with equal error ||[Lx—r||,
this method would return the solution with minimum
||x|| rather than minimum ||c||. Vector components z;
that do not affect Lx would be zero, and the result would
not be in the span of the examples.

4 Prior Probability versus Matching quality

The previous solution will always ensure that E is min-
imized, and in particular that E = 0 whenever this is
possible. Prior probability is only considered within so-
lutions of equal E(c).

However, it may well be that the measurement r cannot
be fully accounted for by an element v of the object
class. First, r may be subject to noise or other sources
of error, such as wrong assumptions on L. Moreover, we
cannot expect to cover the full range of the object class
with the set of examples.

Therefore, minimizing E(x) = ||Lx — r||*> may lead to
model coefficients far from the average, and a heavily
distorted vector v. To avoid this overfitting, we propose
a tradeoff between matching quality and prior probabil-
ity of the solution. This tradeoff will be derived from a
Bayesian approach in the following section.

4.1 Bayesian Approach to Reconstruction

For an element of the model that is defined by model
parameters ¢, a noiseless measurement would be

= Z ciq; = QC (21)

We assume that each dimension j of the measured vec-
tor r is subject to uncorrelated Gaussian noise with a
variance o4 . Then, the likelihood of measuring r € R
is given by

Tmodet = L E Ci0;S;
i

I'|rmodel 'rJ |Tmodel,J) (22)

__2_2"11\7 (rmodet,j—r5)

- (23)

= Vﬁv . e_ﬁ Ej(rmadez’j_rj)Q (24)
! *ﬁ[lrmodelﬂ‘lﬁ

=vy N (25)



with a normalization factor vy. In terms of the model
parameters c, the likelihood is

1 —rl?
sl Qe—rl”.

P(rlc) = vk -e (26)

Given an observed vector r, we are looking for the esti-
mate ¢ with maximum probability. According to Bayes
Rule [2], this posterior probability is given by

P(c|r) = v P(r|c) - p(c)- (27)
with a constant factor v = (/ P(r|c') - p(c')dc) 7t
Substituting (10) and (26) yields

1 2
T 202 1Qe—r]| ~ 12
7 e slel?

Plclr) =v-viy-v.-e (28)

which is maximized if the cost function

E = —2-]ogP(c|r) = 1Qc — r|*+]|c||>+const.(29)

1
ox
is minimized.

4.2 Combined Cost Function

In this section, we show that the cost function (29) can
be minimized in a single step. To simplify the calcula-
tion, we introduce a weight factor = 0% > 0 and min-
imize

E=IQe - +7-lc]. (30)
This can be expanded to

E =(Qe,Qc) — 2(Qc,r) + [Ir]l* + 7 - [le]? (31)

E=(c,Q"Qc) — 2c, QTr) + Irl* + 7 - lle]*  (32)
In the optimum,

0=VE =2Q7Qc - 2Q"r + 2ic, (33)
o)

Q"Qc+nc=Q'r. (34)
Singular Value Decomposition Q = uwv?T yields?

QT'Q=vwuluwv? = vw?vT, (35)
From (34), we obtain

VW?V7Te + pe = VWUr. (36)

> The matrix U € R>™ computed by SVD has the follow-
ing property [5]: If m' <1, U"U =id,,,. If m’ > [, only the
first m’' columns of U are orthogonal, while the others are 0,
so UTU is not the full identity matrix. However, w; = 0 for
i>m', so WUTUW = W still holds.

Multiplying by V7, this can be solved for ¢:®

W2VTc+nVic=WU”r (37)

diag(w? +n) - Ve = WUTr (38)
. wj

Vie = dmg(w? n n)UTr (39)

¢ = Vdiag(—2t )UTr (40)
a g wf +n

Note that in the special case n = 0, this equivalent to
Equation (19).
The overall result is

x = Zciaisi = Sdiag(o;)c (41)
w;
= Sdi ) Vdi L YUTr. 42
ing(o) Vdiag( U 2)
and
vV=x+V. (43)

5 Special case L = id,

In some applications it may be desirable to find the clos-
est element of the span of examples from a vector x that
is entirely known, or to approximate a given element of
the span by a more plausible solution. Both cases are
covered by the previous results if we set L = id,,.

If L =id,, the Singular Value Decomposition of Q is
trivial

Q=S -diag(o;) = UWV”T (44)

with the orthogonal matrix U = S, the diagonal matrix
W = diag(o;), and V = id,,,. Then, Equation (42) re-
duces to

. . . gj T
=5 )il - > 4
x =S - diag(o;)id dmg(af-i-n)s r (45)
_ ; T
= S-dmg(l_’_%)s r (46)
= E L (4, 1) 85 (47)
- 1+% (2 (2

The most relevant dimensions s; with large standard
deviation o; are affected less by 5 than those with small
o;. In the special case n =0, x is given by a simple
projection

x = Z (si,r)s;. (48)

i

8 If (w} +n) =0, which only occurs if w; =7 = 0, we re-

3

place 2 by 0, as we did for the pseudoinverse.

i



Figure 1: From 26 feature coordinates manually defined on
the original image (top left), the system recovered the over-
all shape of the face (top right). With an additional tex-
ture extraction, color information can be transferred to the
3D model (bottom line) to generate new views. Vectors for
translation and scaling (Equation 50) were added to the 99
principal components.

6 Application to Face Data

In the morphable face model [1], facial surface data that
were recorded with a laser scanner are represented in
shape vectors that combine z, y, and z coordinates of
all vertices:

v = (ml,yl,zl,...xp,yp,zp)T eR" n=3-p (49)

Sampled at a spacing of less than 1mm, surface is rep-
resented by p = 75972 vertices. Linear combinations of
shape vectors will only produce realistic novel faces if
corresponding points, such as the tip of the nose, are
represented by the same vector components across all
individual shape vectors. This is achieved by establish-
ing dense correspondence between different scans, and
forming vectors v; in a consistent way.

Along with shape, the morphable face model also rep-
resents texture. In this study, texture is not considered,
and all images are rendered with the average texture.
The method described in this paper could also be ap-
plied to texture vectors, filling in occluded regions of the
face.

The database of 200 individual faces used in this study
has been randomly split into a training set and a test set
of m = 100 faces each. The training set provides the ex-
amples v; that are available to the system. From these,
we computed m' = 99 principal components which are

Figure 2: The first three images show the sets of 17, 50, and
1000 feature points used for evaluation. The image on the
right illustrates where the error of 3D shape reconstruction
was evaluated.

used throughout the following evaluation. The test set
provides data for performance assessment on novel faces.

From the vertices of the full model, we selected sets of
f = 17,50, or 1000 vertices (Figure 2). The smaller sets
are formed by salient points such as the corners of the
mouth, that can be identified in an image. The set of
1000 vertices was selected at random.

Computed by orthographic projection in a frontal ori-
entation, the image plane coordinates of these feature
points form the vectors r € IR , 1 =2- f, that are used
for evaluation.

Projection and orientation also define the mapping L,
which is assumed to be known. For real images, it is
important that the system can automatically adapt at
least to translation and scaling. This is achieved if vec-
tors

stz = (1,0,0,1,0,0,..)7, sy, s, and  (50)
Ss =V (51)

are added to the principal components in S.

The evaluation of the algorithm is based on the following
quantities, which are averaged across all 100 training or
test faces:

e E.=||Qc —r||, the image plane matching error for
all feature points, measured in units of pixels in a
300x300 image.

o ||c||, the Mahalanobis distance of the resulting face
from the average.

e The per-vertex average of distances in 3D space be-
tween reconstruction and original, computed over the
entire set of vertices;

1 P Zi,reconst. Ti,orig.
Efull = - || Yi,reconst. Yi,orig. ” (52)
p Z_l . vort
= Zi,reconst. Zi,orig.

The neck and the top of the forehead are ignored in
this measure, as shown in Figure 2.

For 99 principal components and 50 feature points,
the computation takes 1.6 seconds on an SGI O, with
R12000 processor. This includes forming Q from the
much larger matrix S, SVD of Q, and computation of
the full face model with 75972 vertices. Computation
time depends mainly on the dimensions of S.
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Figure 3: The effect of 77 on average reconstruction results
for 100 novel faces, given 50 feature points, and using 99
principal components. As 7 increases, the feature points are
matched less precisely, so E, grows. In contrast, ||c|| de-
creases, as the results become more plausible. The overall
3D shape error Efyy is lowest for a tradeoff between both
criteria.

| Efu [7=17]F=50] f=1000 |
40 principal comp. 3.21 2.81 2.38
99 principal comp. 3.16 2.72 2.24

Table 1: The average 3D shape error Fy,; for reconstruc-
tion of 100 novel faces at optimal 77 depends on the number
of principal components, and the number of feature point
positions available.

6.1 Reconstruction of Novel Faces

In this Section, we examine how the technique performs
on the test faces that are not included in the set of exam-
ples. The image coordinates of feature points provided
to the algorithm are computed from the 3D vertex posi-
tions of the 3D faces. For f = 50, m' = 99, and different
values of 7, errors are plotted in Figure 3, and results are
shown in Figure 4. Since the feature point coordinates of
the novel faces may be difficult to recover exactly by the
model, low values of 7 lead to overfitting: For = 0 and
1 = 0.0001, the facial surface is heavily distorted, and
the overall error Ey,; is large. Still, the feature point
coordinates are precisely recovered, as indicated by the
low error E,.

As 7 increases, E, grows, while ||c|| decreases, indicat-
ing that the prior probability of the solution gains more
weight in the optimization. As the shape becomes more
smooth and more plausible, the overall reconstruction
error E,; decreases, and reaches its minimum at n = 2.

If n is too large, the output is too close to the average to
fit the data, so both E, and Ey,; are high. The values
on the right in Figure 3 are the baseline obtained with
the average head V.

Table 1 demonstrates how the number of feature points
and principal components affects matching quality. The
reduced set of 40 principal components is formed by
those dimensions s; with maximum variance. As ex-
pected, the error Ef,y is lowest with the largest set of

1n=0.0001

Average o,

Figure 4: Given the image coordinates of 50 feature points
of a novel face (top left), 3D shape was reconstructed with
99 principal components. The result depends on a tradeoff
between the precision of feature point matching, and prior
probability. This tradeoff is controlled by the parameter 7.

feature points and the full set of 99 principal compo-
nents.

6.2 Correct Reconstruction of Training Faces

In this section, we verify that the faces of the training set
are exactly recovered by the system, using all m' = 99
principal components, if f is large enough, and if the
feature point coordinates are precise.

For f = 50 and f = 1000, the dimension of risl = 2-f >
m', so the problem Qc = r has a unique solution. This
solution is recovered by the system, as indicated by the
low values of E, and Ey,y in Table 2, for n = 0.

In contrast, the solution for f = 17 is not unique. Within
the set of solutions, the method returns a vector that
is closer to the average (smaller ||c||), yet produces an
error Ep,y; > 0. Still, this is the best guess, given the
ambiguous information.

| Training data [| f=17 | f =50 | f = 1000 |

E. 8.9e-5 | 1.4e4 3.7e-3
[le]| 5.8 9.9 9.9
Eru 2.1 0.0017 | 5.6 e-05

Table 2: Average reconstruction errors for all training faces,
given different numbers of feature points f. With all 99 prin-
cipal components and 7 = 0, the problem Qc = r is solved
exactly, so E, is low . However, for f = 17, the solution is
not uniquely defined.
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Figure 5: The average shape reconstruction errors for 100
training faces depend on the level of noise o added to each
feature point coordinate. While noise-free data are best an-
alyzed with 7 = 0 (solid line), reconstruction quality is best
atp = UJZV for noisy data.

6.3 Noisy Feature Point Coordinates

As discussed in the previous section, the shape of train-
ing faces can be recovered perfectly from 50 feature
points if their coordinates are precise. In this case, n > 0
would impair the quality of the result, as shown by the
solid line in Figure 5.

However, if Gaussian noise is added to the 2D point
coordinates, r becomes more and more difficult to re-
cover, and overfitting occurs. This is demonstrated by
the large errors Ey, observed for small n if noise with
a standard deviation of o = 0.1 and on = 1 pixels is
added to the horizontal and vertical image coordinates
of each feature point.

As we observed previously with novel faces, the values of
Efyn in Figure 5 have a clear minimum for intermediate
values of 7. In fact, these minima occur at 5 = o, so
matching quality is best for the vectors with maximum
posterior probability (Section 4.1).

6.4 Robustness with respect to L

A similar effect to noise occurs if the matrix L used
for reconstruction is different from the mapping that
produced the feature coordinates in r. This mismatch
is relevant for real images, since the geometry of the
imaging setup will in general be unknown. In particular,
perspective projection produces results that are slightly
different from what is simulated by the orthographic
projection in L.

Figure 6 shows overall shape errors Ey,; obtained with
50 feature coordinates that were computed for a frontal
view. The matrices L used for reconstruction include ro-
tations of ¢ = 0°, 1°, 2°, and 4° around the vertical axis.
While the training faces are perfectly recovered with the
correct mapping ¢ = 0° for n = 0, performance at angles
¢ > 0° is improved significantly with appropriate values
of n.

Efunl T o =4°

T T T T T T T T T T
0 0.0001 0001 0.01 01 1 10 100 1000 avg. N

Figure 6: Reconstruction from 50 feature coordinates of the
training faces at frontal orientation with an incorrect map-
ping L that includes rotations around the vertical axis. 3D
shape error Ky, is reduced by choosing appropriate weights

n.

6.5 Results on Real Images

Figure 1 shows an example of 3D shape reconstruction
from a set of 26 feature points that were selected by the
user. With the limited information about the face, the
method cannot capture details of face shape as precisely
as an optimization based on color values in the image
[1]. However, the overall shape is recovered well, and if
texture is extracted from the image [1], the technique
provides realistic 3D head models.

7 Conclusion

We have presented a method that infers vector dimen-
sions of data vectors from incomplete measurements.
The method is based on a vector space spanned by a
set of examples, and on statistical properties of the data.
Derived from a Bayesian framework, the technique finds
the vector with maximum posterior probability, given
the measurement and the examples.

With the vector space of faces provided by a morphable
face model, we estimated 3D shape of a high resolution
face model from the positions of a small set of feature
points in an image. We evaluated reconstruction quality
in terms of 3D displacements from the veridical shape
of faces, and investigated sensitivity to noise and mis-
alignments.

Clearly, a small set of feature positions is insufficient
to recover all details of a face, such as the shape of the
nose. However, the technique reliably estimates the over-
all shape and aligns the 3D face with the image, which
can be useful for many application. Since the reconstruc-
tion is calculated in a single step, the computation is
performed fast enough for interactive tools.

In the future, we are planning to develop methods for
choosing the optimal weight factor 1 by techniques such
as cross validation within the training set.
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