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Abstract—A variational approach is proposed for the unsu-
pervised assessment of attribute variability of high-dimensional
data given a differentiable similarity measure. The key question
addressed is how much each data attribute contributes to an
optimum transformation of vectors for reaching maximum simi-
larity. This question is formalized and solved in a mathematically
rigorous optimization framework for each data pair of interest.
Trivially, for the Euclidean metric minimization to zero distance
induces highest vector similarity, but in case of the linear Pearson
correlation measure the highest similarity of one is desired.
During optimization the not necessarily symmetric trajectories
between two vectors are recorded and analyzed in terms of at-
tribute changes and line integral. The proposed formalism allows
to assess partial covariance and correlation characteristics of
data attributes for vectors being compared by any differentiable
similarity measure. Its potential for generating alternative and
localized views such as for contrast enhancement is demonstrated
for hyperspectral images from the remote sensing domain.
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I. INTRODUCTION

Progress in opto-electrical engineering, multi-channel spec-
trometers, and highly accurate time-of-flight technologies
stimulates new demands on computational data analysis. One
important direction is the real-time management, interactive
data exploration and rapid analysis, while another direction is
the development of data-specific algorithms, exploiting spatial
arrangements and spectral characteristics. Mass spectrometry
imaging and remote sensing are popular technologies that
deliver massive spatially connected data cubes for which the
main task is the highlighting of application-specific unknown
or expected features [1], [2]. Image segmentation techniques
for the generation of false color images help to visually
emphasize such features. Examples are the assignment of
protein compositions in biological tissue images or the identifi-
cation of geological resources in remote sensing multi-spectral
images. These are already high-level goals that require prior
knowledge, i.e. label information, about candidate materials. In
this case, supervised methods like learning vector quantization,
k-nearest neighbor, or linear discriminant analysis can be used
to map the spectra onto class-related spectral prototypes and
into meaningful subspaces. If additional label information is
not available, faithful unsupervised characterization of the data
is needed. In this case, data-intrinsic features like mathemat-
ical moments such as the mean, variance, or skewness are
essential ingredients for many data operations, among which
normalization, e.g. z-score transformation; clustering, e.g. k-
means; and data-driven projections and analyses, e.g. principal
component analysis [3].

Maybe the most important aspect of unsupervised data anal-
ysis is the choice of distance or similarity measure. Euclidean
distance and, more generally, Minkowski distances belong to
one popular class of metrics focusing on differences of individ-
ual data attributes and pairwise attribute mixtures, respectively.
More relaxed comparisons result from dissimilarity measures
like the Pearson correlation [4] or its descendant, the spectral
angle [5], while density vectors can be faithfully compared by
information-related divergence measures [6].

Depending ultimately on data measures, the nearest neigh-
bor search is one of the most important operations in data
processing models, such as hierarchical clustering [7], vector
quantization [8], endmember detection [9], [10] or morpho-
logical operations [11]. In supervised scenarios the selection
of the ’right’ measure can be alleviated by data-driven adap-
tive metrics. For example, weighting factors of the adaptive
Euclidean distance can be learned from the data for scaling
individual data attributes according to optimizing features such
as class discrimination [12]. Other examples include learning
a matrix metric [13], or adaptive Pearson correlation [14].

In practice, analytic pipelines tend to be inconsistent, for
example, if a k-means algorithm is used, but with other than
Minkowski distances. Then calculated Euclidean centers of
gravity are not necessarily in minimum displacement to data
compared by other measures like Pearson correlation. For ex-
ample, the Euclidean center (1, 1, 1) of three vectors (0, 0, 3),
(0, 3, 0), and (3, 0, 0) even leads to singular values if taken as
argument to Pearson correlation [15]. Analog reasoning holds
true for measures of attribute variability. Principal component
analysis relies on the eigen decomposition of the data covari-
ance matrix, but covariance, measuring attribute variability,
is an inherently Euclidean concept and thus conflicting with
other similarity measures used in the analysis pipeline. The
attribute assessment proposed in the following is as general as
possible, only requiring differentiability of the data measure.

II. DISTANCE PURSUIT METHOD

A variational point-of-view is taken by collecting all infor-
mation about attribute involvement and path length during the
transformation of source vectors into target vectors. Thereby,
the underlying data measure imposes constraints on the op-
timum way between pairwise vectors, as illustrated in panel
A of Figure 1. As a consequence, asymmetric relationships
between the vectors can occur for non-Euclidean as depicted
in panel B of Figure 1. By traversing such measure-specific
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paths partial generalized covariance and correlation quantities
can be computed, which is the goal of this work.

A pragmatic solution to getting along the optimum path
from a start vector w ∈ Rd to a target x ∈ Rd can be best
formulated in an iterative manner. The general procedure is
summarized in Algorithm 1. Therein, t denotes the number
of steps, i.e. the resolution to transform w into x; for this, a
monotonic sequence s = {s0 = d(x,w), . . . , st = dtarget}
from the initial vector distance to the maximum possible
degree of similarity dtarget is created with dtarget = 0 for
metrics and dtarget = 1 for Pearson correlation. This sampling
density is set to t = 16 here, because an even higher density
did not change the final values significantly in the applications.
During execution, the current position of w is continuously
updated and the following two quantities are collected:
g is the overall line integral summing up path fragment

lengths
√
〈v〉2, with self dot-product 〈v〉2 := 〈v, v〉,

b is the integrated differential attribute vector.
This approach works under the assumption that vector transfor-
mations can be expressed as piecewise linear approximations
in d-dimensional space, i.e. target measures are differentiable.

Algorithm 1 distance pursuit DP{b,g}(x, w, t)

1: {input x target vector ; w source vector ; t number steps}
2: g ← 0 ; b← 0d {to be filled and returned}
3: for s← s1 to st {traverse distance sequence w/o s0} do
4: v ← α(s) · ∂d(x,w)/∂w {optimum scaled gradient}
5: w ← w + v {move based on gradient ascent/descent}
6: b← b + v {integrate changes per attribute}
7: g ← g +

√
〈v〉2 {line integral}

8: end for

In Algorithm 1, the optimum scaling factor α(s) can be
either computed by a line search approach, or in some cases
analytically, as will be illustrated for Euclidean distance and
Pearson correlation. The sign of α(s) depends on the opti-
mization approach: for Euclidean distance, the vectors start at
a certain distance that should be minimized to zero by gradient
descent (negative gradient), while for Pearson correlation the
quantity needs to be maximized to one by gradient ascent
(positive gradient).

The general idea is to sample the interval starting at d(x,w)
and going down to zero for regular distances or going up to one
for correlation measures. Using the current sample position s,
the relationship

s = d
(
x, w + α(s) · ∂d(x,w)/∂w

)
(1)

can be used for isolating the gradient scaling term α(s). In
Algorithm 1, line 4, a very general update of v is possible
without α(s) by finding the least norm solution of w∗ starting
at w∗ = w for v ← (arg minw∗ |s− d(x,w∗)|)−w.

Algorithm 1 is formulated for only one pair of vectors,
one being fixed, the other being moved. Depending on the
application many pairs of data vectors need to be analysed by
this algorithm in a bidirectional manner, as will be discussed.

x

w

d
x

w
A B

Fig. 1. Sub-figure A: graphical illustration of the distance pursuit Algo-
rithm 1. Vector x is fixed, and vector w is adapted to minimize its dissimilarity
with x. After each small step on that way, at fixed displacements d to x
indicated by concentric circles, the new optimum direction towards x is
calculated. In the depicted Euclidean plane this finally results in a straight line
between x and w. Sub-figure B: Illustration of non-Euclidean relationships
of vectors x and w. Arrow end points refer to maximum similarity, i.e. not
necessarily identity. The optimum paths for the transformations x → w and
w → x in a given space can be different, and their line integrals may be
equal or different. The dotted line denotes the displacement of both vectors.

A. Euclidean Distance

The Euclidean distance d(x,w) =
√
〈x−w〉2 is a good

starting point for showing the interplay with the distance
pursuit procedure. Using Equation 1 the optimum gradient
scaling term α(s) can be isolated as

α(s) = q1 +
√
q21 − q2(s) with (2)

q2(s) =
〈x−w〉2 − s2

〈∂d(x,w)/∂w〉2
(3)

q1 =
〈x−w, ∂d(x,w)/∂w〉
〈∂d(x,w)/∂w〉2

(4)

Therein, the derivative of the Euclidean distance is given by:

∂d(x,w)
∂w

=
w − x√
〈x−w〉2

(5)

After all, the results from the distance pursuit algorithm are
exactly according to the expectations: g is just the undirected
Euclidean distance between x and w, and b is the difference
vector x−w.

Still, Euclidean distance will become interesting for the
introduction of partial variance and for creating structural
analogies to other measures.

B. Pearson Correlation

Correlation measures are widely used in scientific data
analysis, because they help finding associations between data
vectors [16], [17]. These relationships might be linear or non-
linear, or symmetric or asymmetric [18]. A maximum value of
1 indicates perfect correlation, a value of 0 discorrelation, and
-1 denotes perfect anti-correlation in terms of inverse patterns.

Mean-centered Pearson correlation

dr(x,w) =
〈x− µx, w − µw〉√
〈x− µx〉2 ·〈w − µw〉2

(6)

is used for characterizing the degree of linear dependence,
invariant to the argument vectors’ mean and variance. Its
application for detecting common patterns and relationships
has a long tradition in biosciences, technical analyses, and
econometrics. In spectral data, the spectral angle which is the
arcus cosine cos−1 of uncentered correlation is one of the
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standard analysis measures [5]. The optimum gradient scaling
factor for the Pearson correlation dr is computed by

α(s) =
−(q1 · q2) + q3 · q5 · s2 + s ·

√
q3 · q7(s)

q22 − q3 · q6 · s2
(7)

q7(s) = q21 ·q6+q22 ·q4−2·q1 ·q2 ·q5+s2 ·q3 ·(q25−q4 ·q6) (8)
q6 = 〈∂dr(x,w)/∂w − µ∂〉2 (9)
q5 = 〈w − µw, dr(x,w)/∂w − µ∂〉 (10)
q4 = 〈w − µw〉2 (11)
q3 = 〈x− µx〉2 (12)
q2 = 〈x− µx, dr(x,w)/∂w − µ∂〉 (13)
q1 = 〈x− µx, w − µw〉 (14)

In these equations, µx denotes the arithmetic mean of the
components in vector x, µw is the mean of vector w, and µ∂ is
the mean value of the gradient components of ∂dr(x,w)/∂w.
The derivative of the Pearson correlation is given by

∂dr(x,w)
∂w

= dr(x,w)·
(

x− µx

〈x− µx, w − µw〉
− w − µw

〈w − µw〉2

)
.

(15)
Finally, two notes in favor of the Pearson correlation are

given. First, if components in x and w are turned into
their rank order values Equation 6 yields the Spearman rank
correlation coefficient which is very robust against outliers.
Second, when the logarithm is applied to Equation 6 and if
entries in x and w are non-negative and summing up to one,
then log dr(x,w) = log〈x, w〉−0.5 · log(〈x〉2 · 〈w〉2) becomes
the negative Cauchy-Schwarz divergence [19], which links
the uncentered Pearson correlation to information-theoretic
processing of density distributions.

III. GENERALIZED PARTIAL COVARIANCE

Variance is one of the most basic measures to assess the
variability of data attributes. This helps to characterize the
interestingness of the j-th attribute in a set X of d-dimensional
data vectors. One of the obvious properties is that variances of
the j-th and i-th attribute are usually computed independently
of each other as σ2

k = 1/(n− 1) ·
∑n
l=1(x

l
k − µk)2 according

to the textbook form, µk being the mean value of the k-th
attribute and xlk the entry of the k-th attribute in the l-th
data vector xl. This common notation of variance quantifies
the quadratic deviation of the k-th attribute from its mean.
Alternatively, the expansion of µk = 1/n ·

∑n
j=1 x

j
k could

be used for deriving a double sum notation of the variance
visiting all pairs of data. Inversely, one can consider all data
vector pairs of interest and compute the contribution of their
attributes to the minimization of their common distance, or,
more generally, to the maximization of their total similarity.
A double sum expansion of σ2

k avoids the explicit calculation
of the Euclidean mean values µk.

Generally, pairwise attribute contributions, i.e. covariance,
can be quantified via the partial derivatives for data relation-
ships defined by either all pairs of data vectors or by a subset of
pairs. Let Ii be the set of indices of data vectors connected to

data vector xi then the partial generalized covariance matrix V
with elements k, l = 1 . . . d is calculated by

Vkl =
1
G
·
n∑
i=1

|Ii|∑
j=1

DPbk
(xi, xI

i
j , t) · DPbl

(xi, xI
i
j , t) . (16)

Here, the DP Algorithm 1 is called with a resolution of t
steps to calculate the integrated attribute derivative vectors b
of which the k-th and l-th components are taken. The nor-
malization constant G = 2 · (−z +

∑n
i=1 |Ii|) is twice the

number of pairwise comparisons, excluding the number z
of non-contributing self-comparisons where i = Iij . This
normalization constant makes sure that an unbiased estimation
of variance (k = l) and covariance (k 6= l) is obtained for
the Euclidean distance when all pairs of data are considered,
i.e. Ii = {1 . . . n} for i = 1 . . . n and G = 2 · (−n+ n2). In
any case the matrix V will be symmetric, because the summed
product in Equation 16 is commutative for index swaps k, l
and l, k. The variance is given in the diagonal elements of V .

The partial generalized covariance matrix V can be used
further to calculate partial generalized correlation matrix R
according to the formula:

Rkl = Vkl/
√
Vkk · Vll (17)

If only R is of interest, the factor G in Equation 16 is canceled
out and does not need to be calculated. Again, for data living
in Euclidean space, these values are exactly the values much
more efficiently calculated by Equation 6. The benefit of this
approach is that the arithmetic mean does not need to be
computed explicitly and is thus suitable for non-Euclidean
measures too. Incidentally, the Pearson correlation measure
can be plugged in here to compute a generalized partial
correlation of data compared by Pearson correlation. For
brevity, this will be called meta-correlation in the following.

IV. PROCESSING OF HYPERSPECTRAL IMAGES

The generalized measure of attribute variability has been
applied to a hyperspectral data set from the remote sensing
domain. The cuprite data set, acquired in a mission of the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) [20],
was made available for free download at the website
http://aviris.jpl.nasa.gov/html/aviris.freedata.html; it contains
geological features recorded in the visible and infrared
wavelength range between 380 to 2500 nm. The present
study concentrates on the structurally rich third patch named
f970619t01p02 r02 sc03 which is geographically located at
117◦11’W, 37◦32’N. The patch size is 614× 512 pixels, with
each pixel covering an approximate area of 20× 20 m2. In the
available 224 bands, the 19 channels 1–3, 108–111, and 155–
166 do only contain zero data, and they are thus excluded
from the analysis. The remaining valid channels have been
renumbered in consecutive order.

A first aerial overview is obtained by k-means clustering
with a number of 32 centers for each of the two images
displayed in Figure 2. The top panel shows the quantized
205-dimensional spectra without any transformation of the
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Fig. 2. Quantization of 205-dimensional spectra using k-means clustering.
Top: non-transformed data. Bottom: the 205 channels z-score transformed.

data set, the bottom panel gives the result for a data set in
which each of the 205 channels have been separately z-score
transformed, i.e. by removing the mean and dividing by the
standard deviation. Comparing both images, more consistent
patterns can be found in the transformed case. For this reason
all following operations were carried out on the transformed
data set. This transformation would make queries against
spectral fingerprint data bases difficult, because each channel is
shifted and scaled independently for each spectrum, but since
such queries are not made here, this is not a problem.

Two cases are considered for the partial generalized variance
measures: one refers to localized views on channels, the other
refers to spatially localized spectra.

A. Channel Neighborhood

In hyperspectral data one of the often observed charac-
teristics is a strong correlation between adjacent channels,
especially if the spectral gap between the bands is small [21].
The standard variance of a spectrum in Euclidean distance can
be calculated by Equation 16, basically by looking at the sum

of squared differences of all pairs of spectral channels, each
channel containing 614× 512 values. In this case, structurally
very different channels of far apart frequency bands contribute
to their variance value, which leads to a dominance of large
differences over subtle characteristics. A more localized view
is obtained by comparing only adjacent channels, i.e. channel 2
with channels 1 and 3, 3 with 2 and 4, and so forth. Thus,
if the very boundaries are ignored, the number of effective
comparisons is 2 · (d − 2), leading to the normalization term
G = 4 · (d − 2). As a consequence of the localized view,
the analysis gets more sensitive to changes in else highly
correlated channels. The differences between standard variance
and the partial variance for Euclidean distance is shown in
Fig 3. Note that for each pixel the corresponding spectrum
variance can be calculated independently. While the standard
variance gets dominated by one spectrum around pixel position
(x = 490, y = 280) with a variance of about 8, the partial
version provides more equalized solutions across all spectra.
As a result, more variational features are displayed for the
partial version, although its total range of values only reaches
a level of about 0.35.

Due to z-score transformed channels no noticeable dif-
ference between the shown partial Euclidean variance and
its analogon for Pearson correlation (not shown) can be
found [15]. Yet, the Euclidean example indicates that it might
be worthwhile to consider partial rather than global Euclidean
variance for focusing on localized spatially arranged features.

B. Pixel Neighborhood

The spatial connectivity in images can be exploited for local
analyses. Rather than being interested in the relationship of far
apart spectra, i.e. distant 205-dimensional image pixels, the
neighborhood perspective is of crucial importance, especially
if lateral blurring can be expected. In image operations, local
filters like sharpening and edge enhancement do rely on
the proper definition of the pixel context. Here the standard
Moore environment of 8-neighborhood is considered for the
characterization of spectrum contexts.

An indexing scheme compatible with the notation in the
partial generalized covariance Equation 16 can be easily es-
tablished by serializing the two-dimensional image coordinates
(i, j) into column-major order using the number of rows nr
and the serialized index ι = i + j · nr. Then index sets
Iι = ι+ {−nr − 1,−nr,−nr + 1,−1, 1, nr − 1, nr, nr + 1}
are defining the Moore neighbors of index ι.

1) Partial generalized correlation matrix and eigen-
structure: With the defined indexing scheme Equation 16 is
used to calculate the partial generalized correlation matrix R
defined in Equation 17 for the Pearson correlation measure,
thereby conducting a total number of (614−2)×(512−2)×8
pairwise spectrum comparisons within the 8-neighborhood.

A comparison of correlation matrices resulting from the
proposed generalization of covariance is shown in Figure 4.
From top to bottom, standard correlation, partial correla-
tion computed from the 8-neighborhood, and partial meta-
correlation are shown as color matrices on the left with their
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Fig. 3. Top: standard variance. Bottom: partial variance of the 205 spectral
bands per pixel.

corresponding scatter plots of channel dissimilarities on the
right. It can be observed that a transition from global to
local correlation, i.e. from top to middle row, helps to better
resolve the dominating extremal channels around 105, 147,
and 204. Furthermore, the change from Euclidean distance to
Pearson correlation, i.e. from middle to bottom row, both com-
puted from the Moore neighborhood, changes the relationships
between the channels strongly. Particularly, distant channels
are affected, and the range of values for the discrimination
of channels is increased from -0.2 to 1 for the Euclidean
distance to -0.6 to 1 for the meta-correlation. The global meta-
correlation matrix is not shown here because of excessive
computing times for the roughly 100 · 109 pairwise vector
comparisons using Algorithm 1.

Principal component analysis (PCA) is commonly based
on eigen decomposition of either covariance or correlation
matrix. Correlation matrices, reflect standardized variables and
are therefore preferred in most applications. Each of the three
displayed correlation matrices could be used for creating false
color image representations by mapping the 205-dimensional

TABLE I
PERCENT VARIANCE EXPLAINED BY FIRST THREE EIGENVECTORS

Standard correlation 80% 9% 5%
∑

=94%

Partial correlation 78% 8% 3%
∑

=89%

Partial meta-correlation 36% 20% 9%
∑

=65%

spectra per pixel to RGB space, i.e. to the three major
eigenvectors, or to only the most prominent eigenvector for
addressing an indexed color set [21]. For two reasons these
standard displays of hyperspectral data are not provided here:
Firstly, linear mapping operations of spectra to eigenvectors
are fully justified only in Euclidean spaces. Secondly, even
if such mapping was valid, the eigenstructures of the three
correlation matrices, summarized in Table I, would be difficult
to compare.

Although the matrices of standard and partial correlation
look similar, the decrease from 94% to 89% of explained total
variation indicates that the structural complexity of the eigen-
structure of the partial correlation is higher than for standard
correlation. This becomes even much more evident for the
meta-correlation with only 65% of total variance represented
by the first three eigenvectors. In many applications standard
PCA exhibits an empirically rapid decrease of eigenvalues,
often being examined for thresholding using Catell, Horn,
Kaiser, or other criteria [22]. One line of argumentation
indicates that since a high amount of 94% total variability
can be explained by standard correlation, a faithful RGB
color image could be obtained for representing the underlying
spectra. A more critical reflection leads to realizing outliers
as possible reason for ’explaining’ major directions in high-
dimensional spaces, or apparent redundancies may dominate
the principal directions. Thus, the richer eigenvalue structure
of partial correlation and meta-correlation bares the potential
of more diverse representations of the spectra while being at
the same time more difficult to visualize properly. That’s why
a comparison of generated false color images would be mis-
leading here, because the different color spaces carry different
amounts of represented information. Furthermore, keeping in
mind that a projection onto the principal coordinates is a linear
Euclidean data transformation, more investigation is needed on
the faithful mappings for partial and generalized correlation
measures.

2) Reconstruction of channel relationships: A method to
visualize the dependencies between the spectral channels is
the reconstruction of their dissimilarity matrix in the Eu-
clidean space. For correlation measures such a matrix is
easily obtained by subtracting the respective correlation value
from 1. This leads to minimum values of zero for maxi-
mum correlation and to maximum values of two for anti-
correlation. Reconstructions are canonically obtained by multi-
dimensional scaling (MDS), here, maximizing reconstruction
quality r, the correlation of the given dissimilarity matrix and
the distance matrix of optimized 2D points [23].

Embedding results for the correlation matrices are displayed
as scatter plots in the right column of Figure 4. Reconstruction
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Measure in use: Pearson correlation
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Fig. 4. Data visualization based on correlation matrices. Left: correlation matrices. Right: channel scatter plots obtained by MDS, reflecting dissimilarities
one minus matrix of top row. Top row: standard correlation. Center row: partial correlation based on Euclidean distance. Bottom row: partial correlation
based on Pearson correlation.

qualities of r = 0.990 for standard correlation (top) and
r = 0.989 for partial correlation (center) are almost equally
excellent, and both scatter plots show some common, but
also quite different characteristics. Things in common are the
smooth trajectories of adjacent channels 5–190 with the excep-
tion of some characteristic channels 104–106, 146–148, and
203–205. Different features are the trajectory bendings, and

more characteristic channels are found by partial correlation
in addition to those already identified by standard correlation.
Since these additional channel indices are adjacent to the
ones of standard correlation, this indicates a semantically
meaningful reason, especially, partial correlation of the 8-
neighborhood tends to better discriminate between strongly
correlated channels. Partial meta-correlation (bottom), like
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Fig. 5. Images of weighted Moore neighbor line integrals. Top: Euclidean
distance being at the same time the line integral between spectra. Bottom:
pseudo-distance in terms of line integrals for partial Pearson correlation
between neighbors.

Euclidean correlation, shows a consecutive indexing, pointing
out consistent relationships of adjacent channels. Yet, the
drop of embedding quality to r = 0.954 also indicates a
slightly less faithful representation in 2D Euclidean space. The
channel index gaps in the circular arrangement correspond to
the vertical lines in the meta-correlation matrix, the outlier
indices coincide with those of Euclidean distance. It seems
that the closing of the endpoints in the channel index circle is
forced by the channels 104, 105, 106, 148, and 149 which are
structurally located between the endpoints. After all, meta-
correlation shows a quite distinct scattering of the channel
relationships compared to the Euclidean distance.

3) Line integrals: Finally, the novel feature of line integrals
available as scalar value g by the distance pursuit Algorithm 1
is investigated. The matrix of relationships of the Moore
neighborhood with entries g(i,j)→(i,j+1), and so forth, is
summarized to the weighted sum with the diagonal corners
weighted by factors 1/[(4 + 4/

√
2) ·
√

2], and horizontal and
vertical neighbors weighted by 1/[4 + 4/

√
2].

The resulting images are displayed in Figure 5. The Eu-
clidean case exhibits a good contrast, for example, for high-
lighting the vertically oriented highway. In case of line inte-
grals of Pearson correlation, more curly structures get empha-
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Fig. 6. Terrain image using weighted sums of absolute differences of line
integrals of adjacent channels for the Pearson correlation measure.

sized. Yet, the image is less homogeneously colored, because
neighbored spectra contribute asymmetrically to neighbored
pixel colors, while Euclidean neighbors share the influence of
their symmetric edge. Note the very different ranges of the
color bars. This shows how little efforts are needed to rotate,
i.e. transform, neighbored spectrum vectors from one into the
other direction in order to reach maximum correlation between
them, while their Euclidean distance might get rather large.

The spatial distribution of asymmetry in line integrals of
Pearson correlation is visualized in Figure 6. A high degree
of correspondence with the two previous images in Figure 5
can be observed. As shown, the range of differences between
commuted line integrals can be quite substantial. Yet, the
mechanism underlying the observed and spatially coherent
structure and its connection with asymmetric efforts needed
to rotate spectrum xi into the direction of spectrum xj and
vice versa needs more systematic investigations. Especially
the identification of spatially directed features is essential
for morphological image operations for which the presented
approach contributes a new direction.

V. CONCLUSIONS

A generalized way has been introduced for the calculation
of partial covariance and correlation of attributes in multidi-
mensional data. It contains standard covariance and correlation
of Euclidean data as special case. The new approach is thus
considered to be of interest for the unsupervised assessment
of data attribute variability and attribute correlatedness in
localized or sparsely connected data relationships. In image
processing, such pixel neighborhood operations open a wide
field of morphological operations, such as edge detection, and
local feature enhancement.

For large data sets sparse connectivity is an essential pre-
requisite for being computationally feasible, because of the
otherwise bi-quadratic runtime of O(d2 · n2) for the gener-
alized covariance matrix calculation. Although the distance
pursuit algorithm is computationally quite demanding it is
designed for being computed in parallel on graphics hardware,
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because each thread requires exactly the same number of t
steps composed of structurally identical operations which can
be efficiently warped on hardware, cf. [24]. For Euclidean
distance, the b in the distance pursuit algorithm can be just
replaced by the difference vectors of the arguments, and for
Pearson correlation, a number of t = 16 steps provided very
close results to those involving steps.

Partial generalized variance has been implemented for two
measures, the Euclidean distance and Pearson correlation,
but the framework allows to integrate other measures than
these two. In the experiments with hyperspectral images both
spectrum and channel relationships have been analyzed. As a
main result, the eigenstructure of the partial correlation matrix
for Pearson correlation turns out to be more complex than
the one of standard correlation, but also localized, i.e. partial,
variance helps to equalize the eigenspectrum. This means that
Euclidean data at a global level of comparison is dominated
by almost collinear ’redundant’ vectors along the main eigen-
vector, that is, by very large pairwise differences, but the
data vectors get spread out for better discrimination by using
partial Euclidean or even partial Pearson correlation. Thus,
instead of forcing basis orthogonalization in Euclidean space,
alternative and localized measures may help to achieve the
same goal for a better discrimination of data vectors. Another
result stimulating upcoming research is the observation of
asymmetric relationships between spectra that seem to be
useful for creating contrast maps.

Objective quality assessment of unsupervised methods is a
principal challenge. Here such an assessment is even more
problematic, because no alternative method for the character-
ization of measure-specific attribute variability is known so
far. If you find variance useful, you may find the generalized
distance pursuit-based approach useful too. Rather than being
interested in the ’Euclidean’ attribute variation of strongly
preprocessed and transformed data, making a combinatorial
choice of methods in the data processing pipeline necessary,
the ultimate goal here is the integrated analysis of the original
data given a specified data measure. Besides contributions of
formal solutions for other data measures, providing a real-
time data exploratory analysis with different measures and
neighborhood definitions is a great challenge for the presented
approach, but a goal to be pursued in future.
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