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Abstract. A new supervised adaptive metric approach is introduced
for mapping an input vector space to a plottable low-dimensional sub-
space in which the pairwise distances are in maximum correlation with
distances of the associated target space. The formalism of multivariate
subspace regression (MSR) is based on cost function optimization, and it
allows assessing the relevance of input vector attributes. An application
to molecular descriptors in a chemical compound data base is presented
for targeting octanol-water partitioning properties.
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1 Introduction

The connection of data vectors with a specific target is a fundamental problem
in data analysis. Input data of real valued vectors are basic entities in many
scientific fields, for example, ranging from spectrum data and gene expression
data in medicine and biology via sensor measurements in engineering sciences
to compound fingerprints in chemistry. The target can be a categorial label in
classification tasks, a real-valued dependent variable in regression problems or
even a vector of properties in association scenarios.

The empirical assessment of target information is often a time consuming
and expensive task, for example, the identification of tissue types in histological
samples requires manual work and wet-lab experiments. Due to this careful
intervention it can be assumed that the targets assigned to the sample vectors
reflect a reliable and immutable ground truth, up to a few mislabelings. In
contrast to this, the data vectors live in a space of measurements that usually
quantify general properties, but which should, preferably, be predictive of the
targets.

A number of different techniques exists that allow a link between the input
space and the target space, such as linear discriminant analysis (LDA) for dis-
crete class labels [3], generalized linear models (GLM) for regression tasks [2],
and canonical correlation analysis (CCA) for association problems [1]. These
are well-established linear models. Complementary, neural networks like feed-
forward networks provide a nonlinear connection between input space and the
target, but they do require a choice of architectural parameters in the hidden



layer or the selection of an appropriate learning algorithm, making it difficult to
assess stability and reliability.

The approach presented here allows application to discrete labels and mul-
tivariate regression variables. It follows the assumption that the input space is
adapted in such a way to optimize the input vector representations for matching
the target relationships. More precisely, here a matrix distance with the struc-
ture of the Mahalanobis distance is adapted to yield maximum correlation of
the pairwise vector distances and the associated pairwise target distances. For
this specific distance, the approach can be interpreted as an alternative way for
solving linear inverse models, such as calculated by the Moore-Penrose pseudoin-
verse. The model will be called multivariate subspace regression (MSR) in the
following.

Adaptive matrix metrics have been proposed to be useful in k-nearest neigh-
bors [8] and learning vector quantization with local metrics [4]. Recently a fea-
ture ranking method based on a class discriminant function has been proposed
as robust alternative to LDA [6]. It has been shown this method is useful for
complementing hard feature selection strategies of evolutionary algorithms (EA)
for assessing molecular descriptors for biological and physicochemical property
prediction essential in drug design [5, 7]. Yet, this metric-driven feature rating
scheme required a simplifying two-class assumption of low and high octanol-
water partitioning coefficient (logP) targets. Since the new formalism presented
in the following allows to deal with feature selection in general regression con-
texts, the data base of 439 chemical compounds is revisited to study the influence
of the underlying 73 molecular descriptors on the logP regression task.

2 Methods

Let N input vectors be given as xj ∈ X ⊂ RM , xj = (xjk)k=1...M , 1 ≤ j ≤ N with
associated target vectors lj ∈ L ⊂ Rq, lj = (ljk)k=1...q. The transformable input
space X shall be linked to the immutable target space L by the relationship

Sdv = r(DL,Dλ
X) = max . (1)

Therein, DL is the distance matrix of all pairs of target vectors, here defined
by Euclidean distance; Dλ

X is the matrix of all input vector distances which do
depend on the parameter vector λ. Thus, parameters are sought that maximize
the Pearson correlation (r) between input and target space.

The model parameters are obtained by maximizing the functional Sdv using
its gradient

∂Sdv

∂λ
=
∂r(DL,Dλ

X)
∂Dλ

X

· ∂Dλ
X

∂λ
=

N∑
i=1

N∑
j=1

∂r(DL,Dλ
X)

∂(Dλ
X)i,j

· ∂(Dλ
X)i,j
∂λ

. (2)

The required derivatives of the Pearson correlation are calculated by:

∂r(DL,Dλ
X)

∂(Dλ
X)i,j

=

(
(DL)i,j − µDL

)
− B

D ·
(
(Dλ
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X

)
√

C ·D
. (3)



Therein, µDL and µDλ
X

denote the mean values of the matrices, and the notations

B =
∑N
i=1

∑N
j=1

(
(DL)i,j−µDL

)
·
(
(Dλ

X)i,j−µDλ
X

)
,C =

∑N
i=1

∑N
j=1

(
(DL)i,j−µDL

)2
and D =

∑N
i=1

∑N
j=1

(
(Dλ

X)i,j − µDλ
X

)2 are used.
For optimization the quasi Newton Broyden-Fletcher-Goldfarb-Shanno

method was taken. Optimization is stopped, if the improvement of subsequent
evaluations of Sdv drops below 10−8.

Because of its flexibility, the input vectors xi and xj ∈ X are chosen to be
compared by a matrix metric with Mahalanobis structure in this work:

(Dλ
X)i,j = dv

(
xi,xj |λ

)
=
√

(xi − xj)T · λ · λT · (xi − xj). (4)

Unlike Mahalanobis distance there is no inverse covariance matrix employed.
Instead, the outer self-product of the parameter matrix λ ∈ RM×u defines an
adaptive matrix Λ = λ·λ

T

. This positive-definite matrix Λ contains components
that weigh the influence of attribute pairs (g, k) in the data space. Its maximum
rank is u if the number of input dimensions M is larger than the u-dimensional
subspace defined by X

T

·λ. This subspace is an informative representation of the
input space focused on the target association. Since, in principle, any dimension
u can be chosen it is more flexible than inverse linear models which require the
same dimensionality as the target space. As a very general recommendation, a
choice of u ≤M and u ≤ N , or u ≤ 3 for visualization is possible, depending on
the desired representation accuracy expressed by Sdv .

The derivative of Eqn. 4, useful for optimization, is

∂dv
(
xi,xj |λ

)
∂λ

=
(xi − xj) ·

(
(xi − xj)T · λ

)
dv (xi,xj |λ)

. (5)

If regression targets are modeled in a one-dimensional subspace p = X
T

·λ, the
projected scalar values obviously depend on the data vectors and the parameter
vector. Arbitrary scaling and shifting of the projections p are matched to fit by
choosing α and β in p̂ = α · p+ β such that

F =
N∑
i=1

(
li − (α · pi + β)

)2 = min . (6)

3 Results

A compound data set with 73 molecular features and associated logP values
for 439 chemical compounds has been taken for the analysis, online available at
http://dig.ipk-gatersleben.de/sardux/sardux.html [7]. Therein, an inde-
pendent test set of 30 compounds has been defined that covers the range of logP
values uniformly and that is not confined in the convex hull of the training data.

Two relevant cases are considered here: a multidimensional regression task
on the scalar logP target values and a regression involving three disjoint classes.



While the first application shall illustrate its competitiveness with state-of-the-
art inverse linear models, the second application unfolds its unique use for map-
ping data related to the three-dimensional space of independent (orthogonal)
class labels onto a two-dimensional subspace.

The only model parameter needed to be chosen is the dimensionality of the
subspace, i.e. one and two in these examples. The stability is assessed by run-
ning the optimization 10 times initialized independently with random parameter
vectors λ.

For the multidimensional regression problem, well-proven tools are available
for comparison to the averages and standard deviations of 10 MSR runs: the
matrix left division operator ’\’ based on MATLAB Householder reflections and
the R:limSolve package implementing the Moore-Penrose pseudoinverse. The

r2 MSR MATLAB(7.5.0):’\’ R:limSolve(11.09)
train 0.9357± 0.0001 0.9231 0.9361
test 0.8704± 0.0004 0.8413 0.8660

Table 1: Regression results of the new method compared to approaches based
on pseudoinverse calculations.

comparison Table 1 shows that MSR is better than MATLAB, and slightly worse
then R:limSolve only for the training data. The low standard deviations of MSR
indicate a very good reproducibility. The left panel of Figure 1 shows the MSR
regression result of a model of median performance on the training data, using
projections transformed according to Eqn. 6.

The three disjoint class problem has been created by splitting the logP values
into the lower, middle, and upper 33.3% quantile, assigning three-dimensional
targets (0, 0, 1) for logP < 1.78, (0, 1, 0) for 1.78 ≤ logP < 3.0132, and (1, 0, 0)
for logP ≥ 3.0132 values. Note that this is different from assigning integer
class labels 1, 2, and 3, which, for example, would induce a closer relationship
of the class labels 1 and 2 rather than 1 and 3. The right panel of Figure 1
shows the two-dimensional transformation of the data space aiming at arranging
the projections according to the target relationships. Despite of logP being a
continuous regression variable naturally reflected in the molecular descriptor
vectors, by exploiting the 73 dimensions of the input vectors, MSR is able to
provide a good separation of the projections with only decent overlap.

Figure 2 shows the attribute relevance profiles corresponding to the two re-
gression tasks. At first glance a high degree of similarity can be detected, such
as the highly important molecular van der Waals volume (Mv). Yet, descriptors
like atomic polarizability (Sp) and the number of sulfor atoms(nS) show quite a
different influence on the specific task. These results are quite certain, because
the box plots display a high reproducibility of the model runs. As interesting
to chemists, the profiles do also indicate that most variables do only have minor
relevance on the regression tasks.
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Fig. 1: MSR projection subspaces of logP data set. Left: 1D regression task (big
crosses: test data). Right: 3D disjoint label separation in 2D (filled symbols:
test data).
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Fig. 2: Molecular descriptor relevance profiles given by
∑u
i=1 |λ

i − µλi |. Top:
1D regression task (u = 1). Bottom: 3D disjoint label separation (u=2).



4 Conclusions

The proposed method adjusts a data metric of Mahalanobis structure for arrang-
ing the input vector relationships in good agreement to the target relationships.
The metric parameters result from the optimization of a correlation-based cost
function connecting input and target space. The distance can be re-interpreted
as a mapping of the data vectors to a low-dimensional Euclidean space where
points aim at reflecting the target relationships.

These transformed data points can be used as data replacement in subsequent
analysis steps with standard Euclidean methods for classification and multi-
variate regression. In contrast to traditional feature assessment methods, the
proposed adaptive matrix metric contains information not only about singular
attributes, but about pairs of attributes. This is, for example, useful in com-
bination with feedforward neural networks, because they integrate over input
feature combinations in the hidden layer.

Alternatively, the learned metric parameters can be used for identifying the
relevance of pairs of input data attributes. As demonstrated for the logP pre-
diction task, the rating may depend on the target of regression or multiple class
labeling. The method has good empirical convergence properties and good po-
tential for general data processing tasks.

This work is kindly supported by BMBF grant ARG 08/016 and by MinCyT
grant AL0811.
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