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Abstract

We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation
fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It
is straightforward to implement and computationally competitive; its parameters can be automatically set using
standard machine learning methods.
The surface approximation is based on a modified Support Vector regression. We present applications to 3D head
reconstruction, including automatic removal of outliers and hole filling.
In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects.
The fields are computed using a generalized SV Machine enforcing correspondence between the previously learned
implicit SV object representations, as well as correspondences between feature points if such points are available.
We apply the method to the morphing of 3D heads and other objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — Curve, surface, solid, and object representation

1. Introduction

During recent years, statistical learning techniques have at-
tracted increasing attention in various disciplines of com-
puter science. Learning methods are in general applicable in
all situations where empirical training data are available, and
a generalization to novel instances has to be established. De-
pending on the complexity of the functional dependency to
be estimated, this can be achieved by low-dimensional para-
metric models, or by more general, non-parametric methods.

A particular class of non-parametric methods which have
become popular in machine learning and statistics are ker-
nel methods or kernel machines [SS02]. All kernel methods,
including the well-known Support Vector Machine (SVM)
[Vap98], share the use of a positive definite kernel k : X ×
X → R. Here, X is the domain in which the empirical
data live. In pattern recognition, say, X might be a vector
space of images. In this paper, we assume X to be R

3 or a
subset thereof, containing the point cloud samples and the
implicit surface. Positive definite kernels are characterized
by the property that there exists a mapping Φ from X into
a Hilbert space H (termed the reproducing kernel Hilbert
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Figure 1: The mapping Φ defined by the kernel function k
(Equation 1) transforms the 3D surface to a hyperplane in a
high-dimensional Hilbert space.

space associated with k) such that for all x,x′ ∈ X ,

k(x,x′) =
〈

Φ(x),Φ(x′)
〉

. (1)

Eq. (1) has far-reaching consequences. It implies that
whenever we have an algorithm that can be carried out in
terms of inner products — essentially, all algorithms that can
be formulated in terms of distances, lengths, and angles —
we can construct a nonlinear generalization of that algorithm
by substituting a suitable kernel for the usual inner product.
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Figure 2: The second algorithm presented in this paper
computes a dense correspondence (dashed arrows) between
two regions containing the surfaces (shaded gray) by match-
ing implicit surface representations and given additional
pairs of corresponding feature points (black circles).

Implicitly, we are then carrying out the algorithm in the (pos-
sibly infinite-dimensional) Hilbert space H. The core idea of
kernel methods is thus to reduce complex nonlinear learn-
ing problems to linear estimation problems in Hilbert spaces.
For instance, in SVM classifiers, the elements of two classes
are separated by a hyperplane in H. SVM classifiers form
a very general class of learning machines, and they include
many common types of neural networks as a special case,
e.g., 2-layer feedforward networks and radial basis function
(RBF) networks.

In this paper, we present a method that represents the sur-
face of a 3D object in terms of a hyperplane in H, given a
point cloud of surface points as training data (Figure 1). This
implicit surface can be used for smoothing, de-noising and
hole filling. We then take the approach one step further by
learning a kernel based deformation mapping which, given
two objects implicitly represented by kernel machines, will
transform one into the other (i.e., a warp field). If pairs of
feature point correspondences are available for guiding the
warp field, they are taken into account by the algorithm. Un-
like most previous methods for surface correspondence, our
method provides an estimate of correspondence in the 3D
volume around the surface (Figure 2). For human faces, this
can be used for warping additional structures, such as the
eyeglasses shown in the supplemental material, or anatomi-
cal structures inside of the head, such as teeth or bone struc-
tures. Our new technique can be applied not only for visual
effects, but also in medicine or for scientific visualization
and modeling of volume data.

The next section briefly reviews related work. Section 3
presents our approach for SVM surface reconstruction. Sec-
tion 4 describes the kernel based deformation mapping be-
tween implicit surfaces. Section 5 gives experimental results
on both proposed approaches, and we conclude with a dis-
cussion of our findings (Section 6).

2. Related work

The approaches to the construction of implicit surface rep-
resentations can be divided into three groups: Some algo-

rithms approximate the signed distance function by the dis-
cretized solution of partial differential equations and ap-
ply it to surface editing applications [MBWB02]. Another
powerful class are methods based on local approxima-
tions of the surface, such as Moving-Least-Squares meth-
ods [ABCO∗03, PKKG03, SOS04] and Multi-level Partition
of Unity [OBA∗03].

The third class, into which our own method falls, use a
global representation of the implicit surface function based
on an expansion in radial basis functions (RBF). Some au-
thors have proposed non-compactly supported basis func-
tions [CBC∗01, TO99], others have used compactly sup-
ported basis functions [MTR∗01, OBS03] as we do. Unlike
these methods, which perform a least-squares approximation
with a regularization term that avoids over-fitting and pro-
duces a smooth result, our implicit function algorithm uses
a distance function that is more robust towards outliers, and
another approach for controlling smoothness that is derived
from machine learning. [WL03] proposed a level set estima-
tion method using an SVM classifier for 2D outline estima-
tion in computer vision. [SGS05] recently presented an algo-
rithm which is based on one-class classifiers. Both methods
do not attempt to approximate the signed distance, nor do
they scale well enough to be applied to datasets such as the
largest in the present paper.

Automated algorithms for computing point-to-point cor-
respondences between surfaces have been presented previ-
ously in the context of 3D morphable models. For parame-
terized surfaces of human faces that were captured with a
laser scanner, a modified optical flow algorithm has been
proposed [BV99]. On more general shapes such as animals
or human bodies, methods have been developed that match
each mesh vertex of the first shape to the most similar point
on the second mesh [She00, ACP03]. These methods min-
imize the distance to the target mesh and maximize the
smoothness of the deformation in terms of stiffness of the
source mesh [She00] or the similarity between transforma-
tions of adjacent vertices [ACP03]. For matching partially
overlapping portions of the same surface, Iterative Closest
Point Algorithms [BM92, RL01] provide a reliable solution.
A variety of methods are available from medical data regis-
tration [AFP00]. However, these methods do not use implicit
functions and machine learning methods.

Unlike deformations that are defined only on the sur-
face, a volume deformation algorithm based on free-form-
deformations with B-Splines between landmark points has
been described for MRI scans of human brains [RF03].
[MKN∗04] extend a physically plausible deformation from
a set of sample points to the whole object using a Moving
Least Squares approach. [COSL98] morph two objects into
each other by first applying an elastic deformation based on
feature point correspondences and then blending two im-
plicit functions describing the objects into each other.
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3. Surface reconstruction

Implicit surface modeling is based on the idea that a sur-
face can be described as the set of all x ∈ X ⊆ R

D (D
being the dimension of input space) for which a function
f : X → R equals zero. The method presented here will
model this function as a hyperplane in the (reproducing ker-
nel) Hilbert space H, i.e., as the zero set of the functional

f (x) = 〈w,Φ(x)〉+b, (2)

where w ∈ H,b ∈ R. This hyperplane will approximately
pass through the given surface points, mapped into H via Φ.

In Section 3.1 we will show how this hyperplane can ac-
tually be computed. It will turn out that f can be written as

f (x) =
m

∑
i=1

αik(xi,x)+b, (3)

where k satisfies (1). We will use a radial basis kernel and
call the xi kernel centers or base points. It is clear that one
can trivially “solve” this problem by setting w and b to zero.
To avoid this, we will include off-surface training points and
enforce f to take nonzero values on those points, to be ex-
plained in Section 3.2. In Section 3.3 we will describe a
multi-scale scheme, and in Section 3.4 we show how the nec-
essary parameters can be selected automatically.

3.1. A Simplified SVM Regression Algorithm

Our goal is to fit the function f to a given training set
of points x1, . . . ,xm ∈ X and corresponding target values
y1, . . . ,ym ∈ R. For surface points, the target values are
yi = 0. We use an adaptation of the so-called ε-insensitive
SVM regression algorithm [Vap98, SS02].

As a best fit, we find a trade-off between penalization of
errors and regularization of the solution via the Hilbert space
norm of w. The term ‖w‖2 is often referred to as a large
margin regularizer, as its minimization in an SV classifier
induces a large margin of separation between the classes.
Alternatively, it can be interpreted as enforcing smoothness
of the solution (for details, see [SS02]).

A difference of the function f (x) = 〈w,Φ(x)〉+b at point
xi to the target value yi is penalized linearly as soon as it
exceeds the threshold ε ≥ 0 by a value ξ(∗)

i ≥ 0. This ε-
insensitive loss function [Vap98] makes the SVM more ro-
bust to heavy-tailed noise (such as outliers) than the squared
loss regression which is used in standard least-squares ap-
proaches [SS02].

With a parameter C > 0 that controls the trade-off between
error penalization and function regularization, we obtain the

following convex quadratic optimization problem:

minimize
w∈H,ξi,ξ∗i ∈R

1
2
‖w‖2 +C∑

i
(ξi +ξ∗i ) (4)

subject to 〈w,Φ(xi)〉+b− yi ≤ ε+ξi

−〈w,Φ(xi)〉−b+ yi ≤ ε+ξ∗i
ξi,ξ∗i ≥ 0

Here and below, indices are assumed to run or to sum over
1, . . . ,m by default.

In contrast to standard SV regression, we set the offset b
to a fixed value (see Section 3.3). This will simplify the dual
formulation of the optimization problem. The dual problem
is obtained by using the formalism of constrained optimiza-
tion, known as Lagrange duality for the case of equality con-
straints and extended by Karush, Kuhn and Tucker (KKT) to
the case of inequality constraints (see e.g. [SS02]). A stan-
dard calculation leads to:

minimize
αi,α∗i ∈R

1
2

αT Kα+∑
i

(αi −α∗
i )yi + ε∑

i
(αi +α∗

i ) (5)

subject to 0 ≤ αi,α∗
i ≤C

where α = (α1 −α∗
1 , . . . ,αm −α∗

m)T ,Ki j = k(xi,x j). Using
the KKT optimality conditions, it can be shown that the so-
lution satisfies w = ∑m

i=1 αiΦ(xi). Note that unlike (4), this
problem does no longer explicitly depend on Φ or any ele-
ment of H. Together with the kernel equation (1) the hyper-
plane f can be expressed in terms of kernels (3). This step,
which is crucial to all SV methods, reduces the inner prod-
uct between two possibly infinite-dimensional vectors to an
expansion which can be evaluated efficiently.

Problem (5) is a convex quadratic program with a positive
definite matrix K and a box constraint. We employ a sim-
ple coordinate descent optimization scheme, selecting one
dimension at a time and optimizing the objective function as
a function of that variable with the others fixed:

αnew
i =

−yi − ε−∑ j 6=i Ki jα j

Kii

If αnew
i falls out of the interval [0,C] we set it to the closest

feasible point. This update which is similar to the symmetric
Gauss-Seidel method can be done very efficiently in constant
time, if K is sparse. To ensure sparsity of K, we use the so
called Wu function [Sch95] as a kernel,

k(r) = (1− r)4
+(4+16r +12r2 +3r3),

where r =
‖x−y‖

σ . It has compact support of size σ > 0 and
is in C2(R3). As the result is differentiable, we can calcu-
late higher order differential characteristics of the implicit
surface, such as Gaussian or mean curvature [TG95].

While we have presently introduced the optimization
problem (5) in a somewhat heuristic fashion, it should be
stressed that there are several ways to justify it theoretically:

• Uniform convergence bounds are generalizations of the
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classical law of large numbers which imply that empirical
estimates of error rates will converge to true error rates
provided certain notions of capacity of function classes
are well-behaved. In the case of SV regression, one can
show that the quantity ‖w‖2 is such a way to control the
capacity of the class of linear functions (2), and one can
derive probabilistic upper bounds on the error of the esti-
mated function on previously unseen points (the so-called
generalization error). These bounds depend essentially on
the training error and the size of ‖w‖2 [Vap98].

• Algorithmic Stability is a notion that measures how much
the solution of an estimation problem changes if the train-
ing set is perturbed. High stability combined with low
training error leads to a low generalization error, and,
as above, high stability can be related to a small ‖w‖2

[BE01, SS02].
• Regularization Theory — a small value of ‖w‖2 can be

shown to induce smoothness of the estimated function in
a kernel-dependent manner; for details see [SS02].

• Compression — for SVM classifiers, one can show that
a solution with a small ‖w‖2 can be interpreted as a
compression of the training target values, given the in-
put points. This also leads to generalization error bounds
[vLBS04].

• Bayesian “Maximum A Posteriori” Methods lead to opti-
mization problems of the form (4) and are optimal in the
sense of producing the most likely model, given the em-
pirical data, an observation error model, and a prior distri-
bution formulated in terms of ‖w‖2. We point out that the
observation error model underlying the squared loss is a
Gaussian, while the ε-insensitive loss used in our method
arises from a distribution with heavier tails [SS02], which
is better able to model outliers.

3.2. Training Point Generation

The goal of this section is to estimate the function f such that
it reproduces the signed distance in the vicinity of the sur-
face. This not only helps to avoid trivial solutions f (x) ≡ 0,
but also defines a functional surface description that can be
used for a variety of purposes, such as collision detection or
3D morphing (Section 4). Similarly to [CBC∗01] we achieve
this goal by including additional input pairs (xi,yi) with base
points xi on either side of the surface. These additional train-
ing points are generated by displacing given surface points
along their surface normals by a distance yi, using nega-
tive values inside and positive ones outside. The distances
along the normals are chosen such that the kernel function
k(x) = k(xi,x) has a stable, non vanishing gradient on the
supposed surface.

When deciding whether to include a thus constructed off-
surface point in the training set, we use a heuristic to en-
sure that its target value yi is approximately within 10% of
the correct signed distance. Clearly, the true distance of the
point is at most |yi|. However, it may happen that the surface

bends around, and it in fact is closer than this. We discard the
point if there exists a surface training point at a distance of
less than 0.9|yi|. The method worked well in all our experi-
ments. We assume that surface normals are given, or can be
computed from mesh connectivity or nearest neighbor infor-
mation. The above consistency check and the choice of loss
function make the method robust with respect to noise in the
normal estimates.

It is a well-known and fundamental property of SVMs that
in the resulting expansion of f (Equation 3) a large portion
of coefficients αi may vanish, so f depends only on a subset
of kernel centers xi [SS02] (called SVs). The SVM adapts
the density of contributing kernel centers xi to the complex-
ity of the surface. However, it is in general not known be-
fore training which points will end up becoming SVs. As
a consequence, the runtime of a “vanilla” implementation
of SVMs scales like O(m3). In our specific problem, how-
ever, we can make the optimization algorithm more efficient
by pre-selecting points before training: In a box subdivision
scheme, an initial bounding box is recursively subdivided to
a given resolution defined by the kernel support, and the cen-
ter points are extracted. That way the number of base points
within the support of a kernel function is limited to a fixed
number. When solving the optimization problems, it turns
out that most of the thus constructed training points will
wind up being SVs. The above procedure can thus also be
viewed as a way of preprocessing the training set to identify
points which are likely to become SVs.

For computing the kernel matrix, we apply a fast O(logm)
nearest-neighbor searcher, reducing the runtime scaling of
this step from O(m2) to O(m logm). The same method also
guarantees fast evaluation in O(logm) time.

The overall training time of our algorithm, including the
SVM optimization, is also O(m logm), and the storage re-
quirement is linear, making it applicable to large datasets.

3.3. Multi Scale Approach

In order to obtain a simple and smooth solution which can
interpolate across holes in the surface, we use a combination
of kernels at different sizes. We apply an iterative greedy
multi-scale approximation, starting on a very coarse level
to approximate the signed distance function. On subsequent
finer scales, we only approximate the residual errors. The fi-
nal function is given as the sum of the functions computed
at each level. We set the fixed offset b equal to the biggest
kernel width.

While iterating through the different scales, we discard
a proposed base point if the value of the function at higher
levels is already within the desired fitting accuracy. As larger
kernels can describe flat regions rather well, the number of
base points automatically adapts to the complexity of the ob-
ject.

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 3: An implicit surface reconstruction of the dragon of
the Stanford 3D Scanning Repository. The original mesh has
more than 400k data points. Our reconstruction uses 280k
kernel centers.

3.4. Parameter Selection

The system parameters can be determined without user in-
teraction. For the kernel widths at different scales, we use
a cascade of 1/2,1/4, ... of the diameter of the object. This
choice provides the model with enough variability to recon-
struct fine details while reliably extrapolating across larger
distances. Refinement stops automatically when no new base
points are added any more, i.e. when all proposed base points
are within the desired fitting accuracy. For our test datasets,
five to six scales gave visually plausible and precise results.

The regularization parameters are more difficult to deter-
mine. We use a simple validation scheme: In this scheme,
only a subset of points are used for fitting, while the oth-
ers are independent data to test the generalization error. If
the relative weight of the regularizer is too high (small C in
(4)), the function is smooth but does not fit the training data.
If, on the other hand, the loss term of the objective function
is given too much weight (large C in (4)), we experience
overfitting and the generalization to non-training points de-
teriorates. We find the optimal weight by measuring the gen-
eralization error for different values. The optimal parameter
values transfer well across a broad class of objects.

4. Dense 3D Deformation Fields

Finding a deformation field for morphing objects and, more
generally, defining a criterion for correct correspondence be-
tween surfaces are challenging problems. The algorithm pre-
sented in this section computes a smooth 3D deformation
field between two implicit surfaces. Unlike most other meth-
ods, it gives an estimate of deformation not only on the sur-
face, but on the entire 3D volume that embeds it, which can
be useful for a large range of applications not only in graph-
ics, but also in medicine and engineering.

Figure 4: Holes due to occlusions in the scanning process
(left) are filled by the implicit surface (right).

The mapping computed by the proposed algorithm pre-
serves the value of the function implicitly describing the
object not only on the surface f (x) = 0, but also on off-
surface points. By construction, this implies that it preserves
the value of the signed distance function. Whilst we found
this to work rather well, performance can in some cases be
improved by enforcing invariance of additional quantities,
such as derivatives of the signed distance function. For fur-
ther details, see [SSB05].

In many applications, point-wise correspondences are
easy to find, such as the tip of the nose in faces. The chal-
lenge then is to extend these into a complete correspondence
field for all on- and off-surface points. In our approach, we
assume our objects to be aligned and scaled to the same size
(there is a number of algorithms to solve the registration
problem given a few correspondences [HS92]).

Suppose (xi,zi) ∈ X ×X , i = 1, . . . ,m, are corresponding
point pairs, where the xi lie on the first and the zi on the
second object. We use the transformation

x 7→ x+ τ(x) (6)

with the displacement field τ : X →X minimizing

1
2

D

∑
d=1

‖wd‖
2 +Ccorr

m

∑
i=1

‖xi + τ(xi)− zi‖
2

+Cdist

∫

X
| f1(x)− f2(x+ τ(x))|2 dx (7)

over the wd ∈ H, where (following the SVM approach) we
model each coordinate of τ as a linear functional τd(x) =
〈wd ,φ(x)〉, corresponding to a hyperplane in H. The first
term of (7) is the large margin (or smoothness) term of
SVMs, and the second term penalizes errors in the known
corresponding point pairs. The third term uses the functions
f1, f2 implicitly describing the two objects, respectively.
Since these functions are constructed using the method of
Section 3, they approximate the signed distance function.
Therefore, minimizing this term will lead to a deformation
τ which preserves signed distances: points will tend to get
mapped to points with the same distance to the (new) sur-
face.

c© The Eurographics Association and Blackwell Publishing 2005.



F. Steinke, B. Schölkopf & V. Blanz / Support Vector Machines for 3D Shape Processing

Figure 5: A head model reconstruction with different regularization parameters. The left image uses the parameters chosen by
the automatic validation procedure proposed in Section 3.4, which leads to accurate results. For some applications, a smoother
surface (center) may be preferable. Additional smoothing without re-fitting can be obtained by just excluding the finest scales
during evaluation as demonstrated in the right figure.

Figure 6: The outlier noise in the left scan was automatically removed with our method using a linear loss function (center).
For the squared loss function (right) even the best parameter set produced some spurious surfaces.

In (7), the integral is taken over the whole domain X on
which we want to use the warp. To turn this into a practical
problem, we first convert the integral into a finite sum by
sampling points, say from the area on and around the surface.
Moreover, if we set Cdist to zero initially, the problem can
be decomposed into D convex quadratic programs for wd
corresponding to SVMs with squared loss function. Taking
this as an initial solution, we then optimize the dual of (7)
using gradient descent.

We use the same kernel as above and also apply a multi-
scale scheme. In order to make sure that the sparse feature
point correspondences lead to a good initial guess in a larger
vicinity, we apply wide kernels. For matching detail struc-
tures on the surface of the second object, we need enough
flexibility in the model as provided by smaller kernels. We
iterate the optimization procedure from coarse to fine and
take each level’s results as the initial solution for the next
level.

Although the problem of warp field estimation looks
rather different from the implicit surface estimation problem,
the optimization problems and the multi-scale strategies are
rather similar, enabling us to re-use almost all of our code.

5. Experimental Results

We have tested our method on a number of 3D objects, such
as the dragon model of the Stanford 3D Scanning Repository
(see Figure 3), and on scans of human faces from laser or
structured light scanners.

To visualize our implicit surfaces, we use a surface-
following version of the standard Marching Cubes algo-
rithm.

Speed. We tested our algorithm for surface reconstruction
on different sub-samplings of the head model in (Figure 5)
as well as the dragon (Figure 3). The fitting accuracy was

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 7: A warp between the left triangle and the middle/right figure (black lines). The function values of the implicit surface
functions are color coded. We mark 3 correspondences (red squares) on both objects and visualize the warp on a number of test
points (black crosses). In the center image, the warp is estimated just from the given correspondences, i.e., without our distance
to surface error term. Points between the triangles’ corners do not fall on the target shape. With the distance to surface term
(right), the warp maps surface points to surface points. The distance to the surface is preserved for off-surface points.

set to 0.1% of the object diameter. The times presented here
include the entire process of base point generation and opti-
mization on 6 scales. All tests were run on an Intel Pentium
4 2.2 GHz processor with 1 GB RAM.

Object # Points Time [s] # Kernel centers
Head 2509 3.4 7797
Head 15k 12.4 20297
Head 51k 23.3 25563
Head 178k 34.9 30162
dragon 405k 319 284003

For a given data set, the number of kernel centers satu-
rates (cf. numbers of the head model) as the number of input
surface points increases. Flat, densely sampled regions can
already be approximated with a few large kernels, so a larger
number of points does not increase precision. The algorithm
discards them during the base point generation procedure on
finer scales. If, on the other hand, the structures of the object
are more complex (e.g., the dragon model), then the num-
ber of required kernel centers increases significantly, which
demonstrates how our algorithm automatically adapts to the
object’s complexity.

We tried to compare the implementation of our method
with the state of the art FastRBF code of [CBC∗01]. Trial
versions of this system are available in public domain. The
authors of [CBC∗01] have told us that there is a multi-scale
version of their system, but the code available to us does
not include that. It produces large numbers of RBF centers
which makes a fair comparison difficult. For the head model
with 50k input points the run time was more than 7 min using
more than 100k RBF centers. In cases where both methods
used the same number of kernel centers for optimization, our
code ran about two to three times faster than the FastRBF
code. This is probably due to the fact that our optimization
procedure is extremely simple (in fact, the core procedure is
only 15 lines of C++ code) whereas [CBC∗01] use sophisti-

cated approximation schemes to handle non-compactly sup-
ported RBF functions.

Smoothing, Denoising, Hole filling A common appli-
cation of implicit surface representations is interpolation
across holes and smoothing of real world datasets. As
demonstrated in Figures 4 and 5, our method solves both
tasks equally well. Unlike most other methods, which rely on
a squared loss function, our results are relatively robust with
respect to outlier noise, which is a common phenomenon in
raw data of many types of scanners. Our SVM approach is
based on a robust error measure which weighs large devia-
tions less strongly than squared error measures would.

The effect of different loss functions is demonstrated in
Figure 6. When using a squared loss function in our algo-
rithm, a 3D dataset with huge outliers (an original scan from
a structured-light scanner) did not yield acceptable results,
while our SVM method could deal with this dataset with
only a minor change of the parameter set.

Signed distance function For the construction of 3D
warp fields, we rely on the fact that our implicit represen-
tation locally approximates the signed distance function. We
evaluated the quality of this approximation by plotting the
function value for points shifted along the surface normals
(Figure 8). The diagram indicates that the function values are
a good approximation to the signed distance up to about 15%
of the object’s diameter. The validity range can be increased
by including larger kernels into the multi-scale iteration.

Deformation fields Figure 7 demonstrates our deforma-
tion field algorithm in a simple toy environment. We fit im-
plicit surface functions to two shapes, and construct a warp
field using three given correspondence pairs.

We show its effect on some test points. If we neglect our
distance to surface error term in (7) the best warp is one
which maps the corresponding points onto each other and
leaves the geometry of the object unchanged as far as pos-

c© The Eurographics Association and Blackwell Publishing 2005.
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A B C D E F
Start 50% 100% Target No Correspondence Features only

Figure 9: A morph between two faces (A and D, with markers). Figures B and C show intermediate morphs of the mesh vertices.
Note that the 100% image equals the target image D precisely. Figure E shows a 50% morph without correspondences where
the surface is just projected from face A to D, producing ghost structures (e.g., a double mouth). Figure F shows an elastic
deformation just using the point correspondences without the distance-to-surface error term: The corresponding points are
mapped accurately, but the overall face structure is not aligned with the target D.

Start Target 25% 50% 75% 100%
Figure 10: The Stanford bunny’s head morphed into a human head. We used the same technique as in Figure 9.
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Figure 8: The implicit surface function f of Figure 5, plotted
along the surface normals, reproduces the signed distance
function within a range of 15% of the object diameter. Red:
values for training points, blue: generalization to all surface
points. Both lines are almost identical. The black line shows
the true signed distance.

sible. Our deformation field, on the other hand, guarantees
that surface points of object one are mapped onto surface
points of object two. For off surface points, the implicit sur-
face function value and thereby the distance to the surface is
nicely preserved.

The second example shows a morph between two 3D
heads. We defined 18 correspondences on distinct feature
points as well as on the borders of the shape. Then, we fitted
two implicit representations to the models and calculated the
deformation field in the neighborhood using the proposed al-
gorithm of Section 4. It is important to note that, only after
computing the deformation fields from implicit surfaces, we
apply it to the vertices of a polygonal mesh. We linearly in-
terpolate between the initial and final positions of the ver-
tices to get the intermediate steps.

The resulting transformation looks visually plausible
(Figure 9). It preserves the local geometry during the morph
and produces valid and realistic shapes at intermediate steps.
The transformed mesh approximates the geometry of the tar-
get object, and differences in the implicit surface function
values between input and target points are reduced to values
on the order of 10−3 of the object diameter while keeping
the correspondences within a distance of 10−4.

See Figure 10 to see how we applied the same technique
as above to morph the Stanford bunny’s head into a human
head. Again the intermediate steps look plausible - as far as
possible.

The computational effort to construct these warps depends
significantly on how densely the desired warping volume X
is sampled. We used the base point generation algorithm
from Section 3.2 to generate these sample points. Without
discarding any points as in the reconstruction algorithm,
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A B C D E F
Figure 11: To demonstrate how our deformation field extends from the surface into space, we put sunglasses on the start head
(Figures A, C and E). The mesh vertices of the glasses were transformed with our deformation field to yield Figures B, D and
F. Note how the glasses are smoothly deformed to fit the new head and to keep the distance to the facial surface approximately
constant.

around 100k centers are used for the 3D morphs. The run-
time using our current implementation of the training of the
warp, which is not yet optimized for speed, is then about 2h.

If many correspondences are available, for example from
a dense surface-based correspondence field, our algorithm
can be used to extrapolate the 3D deformation to the sur-
rounding volume. Based on a subset of correspondences for
training the deformation, the warp can be evaluated with the
rest of the correspondence information for an automatic pa-
rameter selection process as used with the implicit surface
function estimation.

In a last experiment we fitted a pair of sunglasses to our
initial head. We transformed its mesh with our space warp
(Figure 11) to show how the deformation field is not just de-
fined on the surface but also extends into space. The glasses
are automatically deformed to fit the smaller head, and to
preserve the distance to the surface.

6. Discussion

We have presented a machine learning approach to 3D shape
processing that involves a statistical treatment and a learning
machine to solve problems of function estimation from train-
ing examples. Our novel algorithm for estimating implicit
surfaces from point cloud data is based on an SVM formula-
tion of the problem, with an ε-insensitive loss function and
a (in our case compactly supported) kernel function. In the
vicinity of the surface, the function defining the implicit sur-
face approximates the signed distance. Moreover, we have
addressed the problem of estimating a dense 3D deforma-
tion field from implicit representations of 2D surfaces and,
if available, pairs of corresponding surface points. The algo-
rithm is again based on an SVM method, and it contains a
criterion for surface fitting, which is to preserve the implicit
surface representation and the signed distance function.

Due to the use of an ε-insensitive loss function, our
method is better at dealing with outlier noise than standard
least-squares fits that are commonly used for shape recon-
struction. We believe that this is useful in a range of in-
teresting applications in processing scan data. Well-known
problems in processing scan data, such as hole-filling and

outlier removal, can be solved with our framework. Our ef-
ficient algorithm is relatively easy to implement. Parameters
of the SVM algorithm are set automatically in a validation
procedure on sample data for one 3D object, and can then be
transferred to novel objects.

Our 3D correspondence algorithm maps not only the sur-
face, but also the surrounding volumes, which could, for in-
stance, be used to register medical volume data based on
point- or surface-correspondence. Establishing correspon-
dence between surfaces has become relevant for statistical
treatments of classes of objects [BV99], and we anticipate
that the extrapolation in depth will open new fields of shape
modeling in the future.

Due to the extensive research in the field of machine learn-
ing in recent years, our approach has a solid theoretical ba-
sis. It builds on principled methods ensuring the best possi-
ble generalization ability of the function estimate, given the
(potentially) noisy data sample available.

We believe that the present work can serve as an example
for the potential of machine learning methods for shape pro-
cessing tasks. The methods described in this paper are but
a starting point, and we are working on a range of possible
extensions and improvements, including the study of other
kernels.
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