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Abstract—In this paper, we address a difficult inverse ren-
dering problem with many unknowns: a single 2D input image
of an unknown face in an unknown environment, taken under
unknown conditions. First, the geometry and texture of the
face are estimated from the input image, using a 3D Morphable
Model. In a second step, considering the superposition principle
for light, we estimate the light source intensities as optimized
non-negative weights for a linear combination of a synthetic illu-
mination cone for that face. Each image of the illumination cone
is lighted by one directional light, considering non-lambertian
reflectance and non-convex geometry. Modeling the lighting
separately from the face model enhances the face modeling
and analysis, provides information about the environment of
the face, and facilitates realistic rendering of the face in novel
pose and lighting.

I. INTRODUCTION

Lighting can severely change the appearance of the human
face and confound the information which is needed for
reconstruction of the face model and face recognition [19]
[22] [6]. Not only emitters but also surrounding objects,
also from the off-screen space, influence the illumination;
objects such as walls, ground, cloths, etc. Inverse rendering
methods usually deal with the estimation of illumination
from the given image data. Especially for faces, many of
recent studies have used the superposition principle to model
the lighting. For an illumination cone —a set of images which
show the appearance of the same face under all possible
lighting conditions taken with the same camera in identical
position and head pose [2] [10]- the superposition principle
implies the following:

m
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where I is the vector of face pixels in the input image with
unknown illumination, & is the vector of scalar coefficients
for the linear combination of cone images in matrix C.
In this paper, we generate C synthetically by rendering a
reconstructed 3D face model (see Fig. 1). In this case, finding
a solution & involves more than just the (pseudo-)inverse of
C, for the following reasons:
1) For the purpose of this paper, only non-negative «;s
are allowed.
2) The surface normals are unavailable for calculating C.
Instead we render an estimated 3D face model which
is suboptimal. Note that we focus on complex lighting.
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3) The reflectance function of the subject’s skin is not
available. We rely on a generic skin reflectance based
on measured data [27].

4) The camera sensor sensitivity curve is slightly non-
linear. We use noncalibrated input images.

5) The quality of an image, its white balance, and optical
features of the camera and lens are not only unknown,
but also estimating them are open problems in com-
puter vision.

6) Digitizing and storing the image also involves com-
pression, use of format specific color representations
and other manipulations which cause loss or changes
in data.

7) Parts of the face might be covered under hair or
other objects with completely unknown reflectance and
geometry and therefore useless in our approach.

For these reasons, solving (1) with SVD does not give
acceptable results. This kind of problems is usually solved
with stochastic optimization algorithms [21] [17], direct
search [12] or with a gradient based approach such as
Newton-Raphson for a linear Least Squares representation.
Our solution employs an adapted version of the latter.

In this paper, we present an optimization method for the
estimation of an array of light sources. The array consists of
directional light sources with fixed directions, for which the
RGB color intensities must be estimated. According to [7], a
limited set of light sources allows a good approximation to
arbitrarily complex illumination. Using estimations of face
geometry and pose from the input image and a generic
face skin reflectance, we generate the basis C synthetically.
Each basis image C; is rendered under the original pose
and orientation as the input image, yet, illuminated from a
single direction with unit RGB values. Hence, each image
in the basis represents the appearance of the face under
one specific light source. Unlike many other algorithms
[10][9][28][15][1][16], we consider specular reflection, cast
shadows and color balance all together in our basis and
aim for a comparably realistic lighting estimation. Assuming
the basis C is fairly close to the physically correct ap-
pearance, we estimate non-negative coefficients ¢; so that
the difference between the input image I and the linear
combination C- & is minimum. Because light is additive and
each image C; represents the appearance of the face under
the single light number i with known direction, we accept
the os as the intensities of the respective light sources. At
this point, we can proceed to use the estimated lighting



to refine the intrinsic face model, and render it in new
poses and illuminations. Relighting, lighting transfer and de-
illumination are important results of this paper and our test
criteria for inverse lighting. Inverse lighting is an important
contribution to face modeling, analysis and face recognition.

II. RELATED WORK

An overview of illumination methods [18] and a survey
on the appearance of human skin [13] provide a general
knowledge of illumination and modeling of human skin.
Schmidt provides a practical survey [24] on optimization
algorithms for Least Squares (LS), comparing L2 regulariza-
tion (Tikhonov regularization) with benefits of L1 regulariza-
tion (LASSO) algorithms from [26] and [5]. Summarizing
a great body of literature, [4] provides a survey on non-
negative optimization. In the following, you find some of
the related work in the area of inverse rendering.

Belhumeur and Kriegman explain the principles of using
an illumination cone to regenerate illumination [2]. They
build an orthogonal basis by SVD on a set of captured
images of the subject. They show that the concept can
be expanded to use with non-convex geometries and non-
lambertian surfaces. Images of the target object under novel
illumination are generated as a linear combination of the
basis. The basis is product of mathematical manipulations
of images and do not necessarily correspond to the laws of
physics. They make no claim regarding the replication of
cast shadows or inference of a physically plausible model
for lighting.

Debevec et. al. demonstrate the acquisition of the re-
flectance field of a face using many scanned images with
several high quality video cameras and a light stage, optical
filters, and a 3D scanner [8]. They estimate reflectance
from the collected data, which allows for generation of
images from original view point and each given sampled or
modeled illumination, in the form of environment map. To
change the view point, they use a model of skin reflectance
and a sampled 3D model of the face. Their results are
highly realistic and include all subtle illumination effects on
the face. A great amount of the illumination effects, e.g.
intensity and color of the light, cast and attached shadows,
color bleeding from nearby objects and inter-reflections, are
implicitly available in the sampled images.

Graham et. al. measure the microgeometry of skin by
analyzing a set of images of a subject, taken under varying
illumination and a fixed viewpoint [11]. They calculate
surface normals and produce a bump map for the skin, using
classic photometric stereo. They use a 12-light dome and
polarized lighting to estimate the BRDF. Weyrich et. al.
measure reflectance model of face skin using a 150-light
dome, 16 digital cameras, and a translucency sensor [27].

Fuchs et. al. present a method for relighting of real objects
[9]. They use photos of a probe object -a black snooker
ball- near the target object to calculate the effects of the
environment illumination. To generate a desired lighting
condition on the target objects, the coefficients of a linear

combination of photos of the probe under the desired lighting
are estimated. Finally, adding up the photos of the target
object, with the estimated coefficients, delivers the image of
the target object under the desired lighting. The method takes
advantage of an stochastic optimization with a regularization
term.

Data driven approaches deliver visually impressive results,
however, they are limited to specific setups and use cases.
In many real life scenarios, e.g. in civil security and arts,
nothing more than a single 2D image is available. Single
image inverse lighting techniques, including [3], [23], [1],
[16] and the proposed method, are forced to use estimations
and assumptions for the whole involving parameters. Based
on the assumptions and accuracy of estimations, the results
differ in detail. For ideal illumination conditions, even a
simple lighting model, such as the one used in [3], prove
to be sufficient for most use cases. They use one directional
light together with ambient parameters for an ad hoc Phong
model to estimate the lighting of the face. Zhao et. al. show
that even without 3D geometry it is possible to perform
illumination invariant face recognition [29], while Romdhani
and Vetter use the illumination effects (specular highlights)
for a better multifeature face model fitting [23].

Aldrian and Smith use a 3DMM of faces for estimation
of geometry and texture and illumination from a single
image [1]. They use spherical harmonics [20] to represent
reflectance and lighting. They separate the illumination es-
timation in two parts, i.e. diffuse inverse rendering and
specular inverse rendering. A physically plausible lighting
is not what they aim for, nonetheless, the image reconstruc-
tions show impressive results, especially in absence of high
frequency illuminations of colored multidirectional lights and
cast shadows.

Li et. al. [16] use results of a 3DMM fitting as prior for
geometry, and texture as prior for albedo, reflectance from
[27] as prior for reflectance of skin and a set of environment
maps modeled with GMM as prior for lighting. Then, they
combine them into a cost function of independent parameters
for: geometry, texture, reflectance and lighting, and optimize
for all of these parameters together.

As the previous work shows, while inverse rendering of
single image has delivered impressive results for images with
uniform to simple lighting situations, it is still an open prob-
lem in computer vision when it comes to complex lighting.
Yet, complex lighting of faces is, in real life indoor and
outdoor situations and in arts, more common than assumed.
Because available previous results of related work are on
simpler illuminations, it is difficult to compare them with
our results on more challenging input images. In contrast to
previous work, we consider different pose, complicated high
and low frequency illumination, multiple colored lighting
and multilateral illumination, hard and soft light, and even
cast shadows and highlights all together to deliver better
results. In the Results section, we show when our method
is successful and when it fails.



II1. 3DMM AND IMAGE FORMATION

As a starting point for subsequent lighting estimation, we
use the Blanz and Vetter 3D Morphable Model (3DMM)
of faces from [3] to estimate the 3D geometry and texture
of the face in the given single 2D image with simplified
BRDF (Phong) and simplified lighting model (ambient +
a directional light). The fitting algorithm estimates the 3D
geometry and 2D texture of the face in different pose and ori-
entations. The 3DMM framework also provides average face
geometry and average face texture. The camera properties
and lighting for Phong model, i.e. ambient and a directional
light, are estimated as part of the whole fitting algorithm.
The Phong model uses ad hoc parameters for shininess and
specular weights. The modulation texture can be assumed
to be the diffuse appearance of the face under uniform, or
ambient, illumination of unit intensity. Thus, in the Phong
reflectance function, the ambient term added to the diffuse
term is multiplied by the modulation texture and finally the
specular term is added to render the image. The 3DMM
framework can smoothly render cast shadows by dedicating a
non-binary shadow factor to each pixel which is occluded by
face geometry for the given incident light. The mean values
of the corresponding pixels in the scanned textures of the
3DMM gallery deliver an average modulation texture (see
Fig. 1) for human faces. In a similar manner, the 3DMM
delivers an average 3D face geometry.

We use the estimated 3D shape in the following processing
steps, conversely, we use the average texture instead of the
estimated texture. The estimated texture tends to contain
overfitting artifacts in difficult lighting situations. These arti-
facts influence the estimation of illumination in the following
steps.

To have a better interinsic model of the face, the 3DMM
framework allows to de-illuminate the visible face pixels in
the input image and use them as corresponding pixels in the
modulation texture (See IV-D). Examples are presented in
Results section.

A. Color Correction

Due to different camera settings and post-processing,
images differ in color contrast and color offsets and gains.
The 3DMM models these with the approach given in (2).

L=0.3R;,+0.6G;,, +0.1B;,
Reorrected = (é (Rin - L) + L) Gr+0O;
Georrected = (5 (Giﬂ - L) + L) Gg + Og
Beorrected = (é (Bin - L) + L) Gp +0p

where R, G and B the pixel values in their respective color
channels, L the color intensity, O,, O, and O, the offset
values, G,, G¢ and G, the estimated gain for each channel
and & is the color contrast. Using linear algebra, it is possible
to write the above relation in one multiplication with matrix
T and one addition to vector ¢ (4), where matrix T3y is:
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Fig. 1. From left to right: The 3D geometry is the result of fitting 3DMM
to input image. The average texture is provided by 3DMM. The synthetic
illumination cone is rendered using average texture, estimated 3D geometry
and m single light sources with a realistic reflectance function for skin.

Then we can rewrite (2) as below:
ﬁcorrected = T~p_;n +0 4

where pj, is vector of non-corrected RGB values of a pixel
P> Deorrected Vector of corrected RGB color, and ¢ is RGB
offset. Note that the gain helps to simulate grey level images
with a color hue. For € =1 it is redundant with the intensities
of incoming light. As far as we are concerned, only intrinsic
features of the face must be modeled within the 3D mesh
and the 2D modulation texture. Everything else, including
the color balance, is just an extrinsic feature and must be
dealt with, using external parameters and calculations. The
color balance modeling, as described, helps this goal. For
the rendering of the basis images, we set d equal zero and T
equal identity matrix to generate a color balance independent
illumination cone. Later, we show that in the cost function
and the optimization process, the color balance (4) with
estimated values from 3DMM fitting are used.

B. Realistic Reflectance Function

To render images, including the basis images C, we en-
hance the rendering engine of 3DMM with a realistic BRDF
inspired by [14] and measured by [27] for human faces. The
BRDF function calculates the diffuse value with a dipole
model by multiplying the modulation texture of the face
by transmittance Fresnel terms of light and view directions.
The specular term is calculated by Torrance-Sparrow formula
which considers subsurface scattering and Fresnel reflection.
The whole rendering terms are multiplied by shadow factor
from 3DMM which is calculated per pixel and per light
direction to allow for smooth rendering of cast shadows.

We adapt our modulation texture so that the result of an
ideal ambient illumination delivers the same average albedo
as the mean value of the measured albedos from the database.
We do so by a division of 3DMM average texture pixels by
a scalar value. The scalar value for each color channel is
calculated as the result of division between average of all
database albedos in respective color channel, by average of
diffuse rendering of the 3DMM average texture with dipole
function and uniform lighting (without the specular term).
Conversely, the Torrance-Sparrow parameters are directly
derived from the database. Also here, we use the mean values
of shininess and specular weight (named, respectively, “m”
and ”p,” in the literature) of each region. We redefine the
regions of the face consistently similar to [27]. Whenever
measurements are not available for a region, we use the
overall mean value. For continuity, we blur between the
regions to avoid hard transitions of specularities on the
rendered face.



Superposition, as a general rule, does not depend on the
reflectance or geometry of the scene, however a realistic or
physically plausible reflectance function leads to a realistic
or physically plausible global lighting estimation.

IV. INVERSE LIGHTING

For a physically plausible inverse lighting, we need to have
a representation of environment which reflects or emits light
toward the face. To model the environment light, we need to
have a distribution of light sources around the face. Then, we
estimate the contribution of each light source in the formation
of the input image.

A. Light Source Distribution

We implement a simple algorithm which uniformly dis-
tributes m points on an imaginary sphere around the face.
The algorithm maximizes the minimum distance between all
point pairs. After the position of m points are calculated,
their coordinates are hard coded for further use to keep
the program efficient and the distribution consistent. For the
results in this paper, we set m = 100. Each point is assumed
to be a light source direction. Each light source is free to
have an arbitrary intensity in red, green and blue channels.
For rendering of image C;, we set the RGB values of the light
number i to (1,1, 1) and all the other light sources to (0,0,0).
For the visualization, we plot the estimated directions on a
2D plane by coding the solid angle (6,¢) to coordinates
(x,y). The center of the plane (6 =x=0,¢ =y =0) is the
frontal direction with respect to face geometry (Fig. 2).

B. Regularized Non-Negative Least Squares (RNNLS)

We assume the 3D face model and the color correction and
reflectance of the skin regions are close enough to reality,
so that a synthetic illumination cone can reconstruct the
input face in a linear combination such as (1). Instead of
solving the equation (1), usually optimization algorithms are
employed to find the appropriate values for the independent
variables. Before proposing our solution, we still need to
consider the differences between the color contrast of the
input image and rendered cone images in the mathematical
model. The linear term (1) together with color correction (4)
imply the following for the red channel.
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IR=oR4 TR  (C-@) 6)
where of the offset for red channel and TR is one vector
of the matrix (3), so TR = (#11,t12,t13). Also, note that
(C- @) is a vector of 3 image elements (CR-aR,C¢-a¢,CB.
&B), where each element is result of the weighted linear
combination of images in respective color channel. The
color correction (o® and TR) must be applied to the linear

combination and not single images C;, thus, cone images
need to be non-corrected. To write the equation system in

form of an optimization problem, usually the input image I

is subtracted from both sides of the equation (5). Expanding
the equation over the pixels and using the L2-Norm for each
pixel in each color channel, the resulting equation provides a
cumulative measure of error for all pixels in 3 color channels.

Fig. 2. A uniform distribution of light sources on a sphere is plotted on
2D plain. Each white square repreients a directional light with (R,G,B) =
(1,1,1). x€ [-m,n] & y € [-F,%]. The middle of the plane is the frontal
directlon (i.e. light is projected from the front of the face). Lights from
absolute back side would appear on the middle of the left and right sides
of the black rectangle, where x = —m or w and y =0

The cost function for three color channels is then a vector
of Least Squares (LS) costs for each channel:
-_ s 2
- . m 5
E(@)=3 Y (0+T-(Z (0i.Ci(p))) —I(P)> 6)
o peface =
To write it in scalar terms, we add up the elements of E(&)
and expand the formula as below:
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where ef(aF) , eg(é'tG) and e5(a”) are per pixel costs,

calculated as below:
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where each f;; is an entry of the 3x3 matrix T from (3),
appeared also in (6). The cost function E(aR,a®,a®) is
regularized with a summation of L2 norms of ¢;-s in each
color channel, primarily, to avoid overfitting.

r(@*,60,8%) = n (o, S+ o

Cr ey, 5E) )

where 11 and o;s are to be tuned. From now on, every time
we refer to cost function or £ we mean the regularized
cumulative color balanced LS for all color channels and
pixels of the face: E(aR,a®, a®) +r(aR, ac, ab).

From a probabilistic point of view, it is equal to assuming
that light sources are expected to be turned off, which we
assume to be true considering the number of possible light
sources around the face (infinity) and the number of effective
light sources in a visible scene. The regularization term also
helps with the non-negativity constraint which we apply and
explain later as part of the tuning.

O'

C. Tuning of PseudoNewton-Raphson Minimization for
RNNLS

The update function of Newton-Raphson is straightforward
for LS. Whenever X is the vector of independent variables in
a LS optimization, the update term for each element x; is:

W= —HT . V) (10)

where V and H are gradient vector and Hessian matrix in ?-
th iteration. Hence, the first and second partial derivatives of



the LS cost function must be calculated. The first derivative
for each ch is given in:
del 0e§ deB
VI; = ;TE;Q :Zpeface (80!% + aa?_? + (9&%) +387’;R
The calculation for other color channels and dimensions are
similar.

For our cost function E, the second derivative is zero
whenever the pixel value in the given dimension C; is zero.
The illposedness of the problem leads to singularity in the
symmetric Hessian matrix. To work around the singularity,
it is possible to use SVD, however, we simply calculate
pseudo-inverse of the Hessian, using (12). First, we calculate
the diagonal values of the Hessian by two times differentiat-
ing the E function in each of the m directions. Ignoring the
rest of the entries of Hessian, each element hi_j1 of pseudo
inverse is calculated as below:

Y

e j>€ & i=
e O (12)
/ 0 otherwise
. 2 . .
where h;; for red channel is hf} = aa(?.R fa,_e and € is an arbitrary

positive value close to zero. The biggér the €, the less fine
illumination effects appear on the linear combination and on
the reconstructed images.

Before performing Newton-Raphson, we scale down all
the images T and C;s with a Gaussian filter which only
considers the face pixels. When blurred moderately, the
images become smaller which affects the time consumption
and the small high frequency texture irregularities disappear
in the input image. Conversely, overdoing the blurring in-
fluences the high frequency illumination effects and make
them ineffective in the optimization process. Negative s
appear because the value of the linear combination is too high
for some areas compared to the corresponding area on the
input image. This also happens in presence of cast shadows.
To compensate for the too strong light sources, some other
light sources become negative to cancel their effect. While
no light source exclusively illuminates the cast shadow area
(e.g. around the nose) negative light sources for estimation of
cast shadows lead to non-correct low illumination of usually
bigger areas of the face. Again, other light sources must
cancel the darkening effect of a negative light, and so forth.
Therefore, we prefer to avoid negative light sources and
keep the lighting physically plausible. An L1 regularization
term “shrinks” the values to zero, while it penalizes high
intensity and low intensity lights similarly. We prefer to
use an L2 term which allows for smooth regularization of
stronger and weaker light sources around zero. Although
negative values occur either ways, they are less likely to
become so significant that use of barrier functions or other
methods (see [4]) to avoid them becomes necessary. Instead
of developing the cost function with more terms to apply
non-negativity constraints, we set the negative values to zero,
once after every 50 iterations. After 600 iterations, we zero
negative as after each following iteration, hence, the final
results in 1000th iteration are zero or positive. The problem

we described so far is highly non-stable. If we set o; to 1 and
tune 17, soon enough, we observe that a stable 11 which avoids
overfitting, also cancels many subtle illumination effects,
which we intend to reconstruct in this paper. To make use of
our prior knowledge and available synthetic measurements
in C we calculate o; for each dimension i as the relationship
between illuminated pixels in G compared to the total face
pixels n.

. __ Number of illuminated pixels in_image C;
L™ Number of non—occluded face pixels "n”

(13)

The o;-s mathematically consider that the regularization term
is more effective in a dimension i if in the respective cone
image C; less relevant information (i.e. meaningful illumi-
nated pixels) are available. In other words, the deviation of
the intensity of light is narrower around the expected value
(i.e. zero) for cone images which contain less information
about the effects of their respective light source. Thus, less
determined light sources are more intensely penalized.

With these modifications, the arbitrary values € and n) are
tuned for the best result. For us € = 1E — 10 or smaller works
properly. 1) needs to be close to 1E — 1. However, we observe
that smaller values for 7] lead to overfitting, which appears as
areas of too strong intensities, and bigger ns lead to darker
illumination of the whole face.

Tuning this algorithm for greater number of light sources
m leads to better results in most cases, while making the al-
gorithm less stable due to the increasing correlation between
the dimensions. In images with extended light sources, the
solutions of the problem (6) may be ambiguous: instead of
multiple white lights, the output may be a set of colored
lights (that add up to white). The weighted prior in (9)
and (13), and the non-negativity reduce the ambiguity. In
our experiments, more restrictive priors gradually reduce the
visual quality of the results.

D. Realistic Texture from Single Image

For realistic rendering, a realistic and detailed texture of
each individual face is essential. The average texture which
is used for rendering of the basis C is not enough to achieve
satisfying results. On the one hand, the 3DMM already
estimates the texture as part of the fitting algorithm. On the
other hand, usually in the input image there is more accurate
detail information about parts of the face texture. To acquire
this detailed texture for the face model, we must remove the
illumination effects first. For each texture element, the first
step is to read the corresponding pixels in the input image
and invert the color correction (4). Then, we de-illuminate the
pixels by subtracting the specular component and calculating
the diffuse reflectance (diffuse map) based on the BRDF
model [27] and the estimated lighting. Whenever the pixel
is not visible, the estimated value from 3DMM texture is
substituted. The result is an intrinsic realistic texture. You can
see this texture in the examples in the result section. The de-
illuminated image-based texture is labeled ’h” in each series
of images, while image ’g” shows the image-based texture
under the estimated lighting from proposed method.



Fig. 3. a) Original image (This one is Copyrighted by Barrie Spence 2013).
Images b, ¢ and d are results generated with the 3DMM framework. Images
e-k are results of the proposed algorithm. b) 3DMM full reconstruction
rendered with average texture to show the lighting estimation. ¢c) 3DMM
result with image-based texture values using ambient and a directional light
with Phong model. d) 3DMM result for image-based textures with uniform
diffuse lighting to show the intrinsic texture. e) Specular map result of
proposed algorithm to show the specular shading on the geometry. f) Result
of estimated illumination rendered with average texture compared to b.
g) Result of proposed rendered with image-based texture compared to c.
h) Result of proposed image-based texture rendered with uniform diffuse
lighting, compared to d. i) The diffuse map, result of proposed method
to show the diffuse shading when applied on average texture. j) Sphere
rendered with average skin BRDF and estimated light sources from proposed
method. k) Light source distribution which shows the direction and color
of estimated light sources around the face (See caption of 2 for orientation
in spherical coordinates). In this example, the improvements are vast. The
colorfulness of the light sources in k plays almost no role in the cost function
because the low color contrast of the input image provides little amount
information about the used light colors. In the results, the saturation is
correctly reduced by the color balance term.

V. RESULTS

The geometry, texture and reflectance of the subject’s skin
are important unknowns in our method. In case of synthetic
input (Fig. 7), the proposed method delivers almost zero error
with no visible difference between synthetic input (a) and
the re-rendered image with estimated illumination (f). Even
the light direction and color are estimated accurately which
lead to accurate intensity and contours of cast shadow in
the reconstruction image (f). For real images, we present
our results together with the results generated with 3DMM
framework [3] for comparison. Our algorithm relies on the
estimated geometry by the same 3DMM and its average
texture, while results of the proposed algorithm show qualita-
tive improvements compared to 3DMM, especially whenever
lighting conditions are too complex to be estimated by Phong
model and one directional light. Here, we show examples
of multi-directional (Fig. 3) multi-colored (Fig. 4) lighting.
The images are taken under outdoor and indoor conditions
where different types of reflections appear on the face. The
advantage of the proposed algorithm is less visible for input
images with simple lighting, therefore, we show examples

Fig. 4. For description of labels see caption of Fig. 3. Here, you can see
the high frequency colored illumination on the right side of the image has
been correctly estimated in the proposed results. Specially, images e and i
show the contribution of specular compared to diffuse term in the formation
of the rendered face.

with different levels of illumination complexity to show the
versatility of the proposed algorithm with a generic tuning
(See IV-C). The generic tuning is achieved by testing the
algorithm on a collection of 46 input images with different
complexities of lighting, pose, and different subjects. To
show results for illumination transfer, we use the estimated
light sources from one input image on the intrinsic face
model of another image, which has been de-illuminated with
the proposed method. Some examples are presented in Fig.
8, where beside illumination transfer, also novel pose and
novel color balance are demonstrated.

As part of the evaluation, we estimate the lighting for
a number of images from CMU PIE database [25]. We
choose images taken under all the same conditions, including
similar lighting, from different subjects. Then we render a
sphere with average BRDF of skin to show the estimated
illuminations on a single reference geometry. Although the
implemented algorithm minimizes the cost function, there is
no obvious way to quantify the difference between the esti-
mated illuminations, perceptually or physically in an infor-
mative way. We performed a PCA, however, the quantitative
results (Variances, visualizations of main axis) convey little
insight. All of our efforts to make a quantitative evaluation
led to non-informative values. Therefore, we provide Fig. 9,
a representative set of results for direct comparison. In these
images, you can see that the color of lighting is affected by
the difference between the color of average texture and the
skin type. One reason for this is the focus of 3DMM on a
limited variety of skin types and therefore a biased average
texture. In spite of the color of lighting, Fig. 9 shows that the
directions and intensities of lights are consistent between the
images which are taken under the same lighting condition.

Beside being able to claim to outperform state of the art



Fig. 5. For description of labels see caption of Fig. 3. This input image has
a high frequency low intensity illuminated area on the left side of the face,
which the 3DMM results in the top row do not reproduce; not even as part
of the texture in image c. Yet, the proposed method estimates even the subtle
lighting effects such as this one and leads to general improvement of the
appearance of the rendered image. Image h shows a more illumination-free”
intrinsic skin texture than image d. Images e and i show that the highlights
on the left side of the face are more of specular nature than diffuse.

Fig. 6.  For description of labels see caption of Fig. 3. Estimation of
cast shadows of micro structures, e.g. deeper wrinkles, are not achievable
because the respective geometry is not estimated. The cast shadow of the
nose is estimated, as visible in f and i. However, it is too weak to remove
the shadow from intrinsic texture in image h. Images f, g and h show visible
improvements compared to b,c and d. For instance note the appearance of
the bluish highlights on the left side of the face in f. This highlight is visible
in the rendered sphere under the estimated lighting, shown in image j.

Fig. 7. For description of labels see caption of Fig. 3. The input image
is a synthetically rendered image using one directional light, the same one
as the optimization procedure found correctly. The found light source is
represented as a white square on k. Here we also include the error image
(f —a). The error image is added by 0.5 to make the errors visible

i

Fig. 8. This images show the result of lighting transfer from some examples
to relight other examples with novel pose. Thereby, the intrinsic features of
the face (i.e. geometry and image-based adapted texture) are illuminated
with light sources from a different face image. The first row shows faces
in novel pose and novel lighting. The color balance has been also slightly
changed to show the effect. i) Face from Fig. 5 and light sources from Fig.
4. ii) Face from Fig. 4, lighting from Fig. 5. iii) Face from Fig. 3, light
sources from Fig. 4. The bottom row all take the estimated light sources
and color balance from Fig. 3 in their initial pose. iv) Face from Fig. 5. v)
Face from Fig. 4. vi) Face from Fig. 6.

i
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First row are input images of different subjects under similar
illumination. Second row are rendered spheres with average skin BRDF
and generic color correction, where the light sources are estimated with the
proposed algorithm from the respective input images above them. Note that
some of the skin properties are wrongly attributed to the lighting by our
algorithm.

Fig. 9.



single image inverse lighting methods, a general weakness of
the implemented algorithm can be seen where sharp edges
are available between strongly different illuminated areas,
e.g. strong shadow in an intensely illuminated neighborhood.
The problem is that the border, which should be a strong
separating line between the areas, is mostly estimated par-
tially correct or with a lower frequency line. (See border of
attached shadows in Fig. 3 and the cast shadow under the
nose in Fig. 6).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we show that given only a single 2D face
image, a physically plausible inverse lighting is achievable,
even in the absence of necessary measurements of 3D
geometry, albedo and reflectance. Our method delivers signif-
icantly improved results in complicated lighting conditions,
helps intrinsic face analysis and allows for more realistic
face modeling. We show that the Newton-Raphson for Non-
Negative Regularized Least Squares can be stabilized for
non-orthogonal basis with highly correlating basis dimen-
sions. Improvements are less visible in images taken under
simple lighting conditions, nevertheless, whenever multiple
colored lights and cast shadows are involved, the proposed
method delivers more realistic results than previous methods.
Using our method, unknown illumination conditions can be
estimated, removed from the face model and transferred to
other face models. We show that the solution works perfectly
for synthetic data, data for which the 3D geometry and
reflectance are accurately available. This hints for using the
proposed method in problems where more data are available
and shows that using a non-orthogonal and realistic basis not
only allows for replication of cast shadows but also leads to
realistic inverse lighting. To improve the lighting estimation
results, having more information about the skin color type
and reflectance might help to avoid estimating darker lighting
for darker skin types. Skin type might also be in correlation
with other inferable information from the face image. Using
EXIF meta data might give clues of the intensity of lighting
in the scene and improve the per image assumptions, as well.
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