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ABSTRACT
This paper describes a system for animating and modifying
faces in images. It combines an algorithm for 3D face recon-
struction from single images with a learning-based approach
for 3D animation and face modification. Modifications in-
clude changes of facial attributes, such as body weight, mas-
culine or feminine look, or overall head shape, as well as
cut-and-paste exchange of faces. Unlike traditional photo
retouche, this technique can be applied across changes in
pose and lighting. Bridging the gap between photorealis-
tic image processing and 3D graphics, the system provides
tools for interacting with existing image material, such as
photographs or paintings. The core of the approach is a sta-
tistical analysis of a dataset of 3D faces, and an analysis-by-
synthesis loop that simulates the process of image formation
for high-level image processing.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Animation

General Terms
Algorithms

1. INTRODUCTION
Unlike many other fields in computer science, progress

in computer graphics involves adaptations to human users
in a variety of different ways: First, the image data pro-
duced in graphics has to consider and exploit the laws of
human perception. For example, research in tone mapping
aims at producing images at low dynamic range in intensity,
which can be displayed on standard computer screens, and
still reproduce the visual appearance of natural scenes that
have a large dynamic range due to extreme lighting condi-
tions. Many algorithms in tone mapping are inspired by
psychophysical findings (such as [12]), and in turn, the only
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valid criterion for the quality of a tone mapping operator is
human perception [16].

Computer graphics is being adapted to the human needs
also in terms of the contents and style of the images, by
producing material that is meaningful in a cultural context.
While most of the computer graphics images and movies pro-
duced in the 1980s and 1990s were entirely virtual scenes,
located in a physically and semantically void space, visual ef-
fects today are more and more embedded into a rich context:
Computer graphics is mixed with shots of natural scenes,
with either of the two dominating the picture, and existing,
real characters, images and objects are reproduced and ma-
nipulated. Unlike the artificial characters of early computer
animation, they may now be used as virtual stunt doubles in
movies such as The Matrix. Scenes may be altered by adding
or removing buildings or other objects in each frame. The
benefit of the combination of 3D graphics with natural im-
ages is a photorealistic, highly complex visual appearance
with meaningful content. However, it is still challenging to
achieve the same visual standard for computer graphics ele-
ments when shown side by side with natural photo material.

In facial animation, we are beginning to see a level of qual-
ity that captures even subtle facial expressions or combina-
tions of expressions. These give artists the tools to model
the complex, sometimes conflicting emotions of their char-
acters. An example of this can be seen in the character Gol-
lum in the feature film The Lord of the Rings. A medium
that conveys more and more emotional content in artistically
sophisticated narratives, computer graphics is transforming
from a machine-centered to a human-centered medium, with
the content not limited but enhanced by technology.

In contrast to the strive for photorealistic images, non-
photo-realistic rendering has developed algorithms that give
artistic styles to images and movies, some of them simulat-
ing painterly styles such as oil on canvas or watercolor, pen
and ink drawings, cartoon drawings and engravings ([8, 10]).
Non-photorealistic rendering, therefore, bridges the gap be-
tween electronic and traditional art, and brings a variety
of interesting connotations to otherwise synthetic images.
Non-photorealistic rendering may also be a powerful tool
for visualization, and for making image content more com-
prehensible to human viewers [6].

Finally, the progress in user interfaces for content cre-
ation in computer graphics adapts this tool more and more
to the demands of the artist, and it remains an interesting
challenge to make the increasingly powerful algorithms in
graphics easily available to users with little or no technical
background. Moreover, the efficiency of the tools provided
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Figure 1: Fitting the Morphable Model to an im-
age produces not only a 3D reconstruction, but also
model coefficients αi, βi, and an estimate of head
orientation, position and illumination.

by computer graphics systems may help to increase the cre-
ative power of those who use it significantly. An important
component is the level of abstraction of the interaction tools
and of the internal representations of computer graphics sys-
tems: As an example, consider an artist who wishes to make
a character in an image more skinny. In an image-based sys-
tem, such as software for digital image processing, the artist
would need to shift the facial silhouette of the cheeks with
copy-and-paste tools, or even paint the new silhouette with
a digital brush. In 3D computer graphics, the face would be
represented by a polygon mesh, and the artist would select
and shift groups of vertices to change the 3D shape of the
cheeks. On the highest level of abstraction, however, the
artist would like to have an interactive tool, such as a slider,
that controls the skinniness or fatness of a face directly, so
the user would only select a face in the image and use that
slider.

In this paper, we describe a system that implements this
paradigm of high-level control. The system works on faces
in any given photo or painting at any pose and illumina-
tion. Applied on existing image material, it provides a tool
that interacts with material that is meaningful in a complex
cultural background, such as paintings. As a tool that ani-
mates, modifies or exchanges faces, it addresses perhaps the
most relevant content of visual media, the human face.

1.1 System Overview
Modification of faces in given images at any pose and illu-

mination is a non-trivial problem that involves information
about the 3D geometry of the face. For example, making a
face more fat or skinny changes the silhouette and the shad-
ing of the face, which calls for a direct or indirect (implicit)
representation of effects in 3D space, such as perspective
projection, occlusion and interaction of light with matter.
In our approach, we chose an explicit representation of the
3D geometry of the face.
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Figure 2: In the vector space of faces, facial expres-
sions are transferred by computing the difference
between two scans of the same person (top row),
and adding this to a neutral 3D face. To modify
Leonardo’s Mona Lisa (second row), we reconstruct
her 3D face (third row), add the expression, and ren-
der the new surface into the painting (second row,
right).

In order to interact with faces in 3D space, given an image,
we have to solve the difficult, ill-posed problem of 3D shape
reconstruction from single images. This problem can only
be solved by including prior knowledge about the possible
3D solutions. In 3D reconstruction from architecture, such
prior knowledge may be the fact that many lines are parallel
or orthogonal in 3D [9]. For human faces, the set of 3D so-
lutions may be restricted by exploiting the statistics of face
shapes. The core of our work, therefore, is a 3D Morphable
Model of faces [4] that captures the natural variations ob-
served in human faces. This model is learned automatically
from a dataset of 3D scans of faces [4]. Figure 1 illustrates
the process of 3D shape reconstruction. The algorithm for
shape reconstruction is fully automated, but it has to be
initialized by manually labelling a set of between 6 and 15
feature points in the image. As a side effect, the algorithm
computes the 3D pose and illumination parameters of the
face in the scene, which can be used when the modified 3D
face is drawn back into the input image.



For 3D face manipulation, we describe three modes of
interaction:

• Facial animation,

• High-level control of facial attributes, such as gender,
body weight and nose shape,

• Exchanging faces in images.

In all of these interactions, a 3D model of the face is recon-
structed from the input image, modified in 3D, and drawn
back into the original image (Figure 2.) Both the animation
and the modification of high-level attributes are learning-
based: changes in 3D geometry and in texture are learned
from datasets of 3D scans, unlike the labor-intensive man-
ual surface editing procedures performed by animators and
modelers in production studios today.

In the following sections, we describe the Morphable Model
(Section 2), summarize the algorithm for 3D shape recon-
struction (Section 3), describe the approach to facial anima-
tion (Section 4), discuss our technique for exchanging faces
in images (Section 5), and present a method for learning and
changing attributes in faces (Section 6).

2. A MORPHABLE MODEL OF 3D FACES
The Morphable Model of 3D faces [14, 4] is a vector space

of 3D shapes and textures spanned by a set of examples.
Derived from textured Cyberware (TM) laser scans of 200
individuals, the Morphable Model captures the variations
and the common properties found within this set. Shape and
texture vectors are defined such that any linear combination
of examples Si, Ti,

S =
m

X

i=1

aiSi, T =
m

X

i=1

biTi. (1)

is a realistic face if S, T are within a few standard deviations
from their averages. Each vector Si is the 3D shape of a
polygon mesh, stored in terms of x, y, z-coordinates of all
vertices j ∈ {1, . . . , n}, n = 75972:

Si = (x1, y1, z1, x2, . . . , xn, yn, zn)T
. (2)

In the same way, we form texture vectors from the red, green,
and blue values of all vertices’ surface colors:

Ti = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T
. (3)

Such a definition of shape and texture vectors is only
meaningful if the vector components of all vectors Si, Ti

have point-to-point correspondence: Let xi,j ,yi,j ,zi,j , be the
coordinates of vertex j of scan i. Then, for all scans i, this
has to be the same point, such as the tip of the nose or the
corner of the mouth. Using an algorithm derived from opti-
cal flow, we compute dense correspondence for all n = 75972
vertices automatically [4].

Finally, we perform a Principal Component Analysis (PCA,
see [7]) to estimate the probability distributions of faces
around their averages s and t. This gives us a set of m
orthogonal principal components si, ti, and the standard
deviations σS,i and σT,i of the dataset along these axes. We
can now replace the basis vectors Si, Ti in Equation (1) by
si, ti:

S = s +

m
X

i=1

αi · si, T = t +

m
X

i=1

βi · ti. (4)

In the following, we use the m = 149 most relevant prin-
cipal components only, since the other components tend to
contain noise and other non class-specific variations.

3. ESTIMATION OF 3D SHAPE, TEXTURE,
POSE AND LIGHTING

From a given set of model parameters α and β (4), we
can compute a color image Imodel(x, y) by standard com-
puter graphics procedures, including rigid transformation,
perspective projection, computation of surface normals, Phong
illumination, and rasterization. The image depends on a
number of rendering parameters ρ. In our system, these are
22 variables:

• 3D rotation (3 angles)

• 3D translation (3 dimensions)

• focal length of the camera (1 variable)

• angle of directed light (2 angles)

• intensity of directed light (3 colors)

• intensity of ambient light (3 colors)

• color contrast (1 variable)

• gain in each color channel (3 variables)

• offset in each color channel (3 variables).

All parameters are estimated simultaneously in an analysis-
by-synthesis loop. The main goal of the analysis is to find
the parameters α, β, ρ that make the synthetic image Imodel

as similar as possible to the original image Iinput in terms of
pixel-wise image difference in the red, green and blue chan-
nel:

EI =
X

x

X

y

X

c∈{r,g,b}

(Ic,input(x, y) − Ic,model(x, y))2. (5)

All scene parameters are recovered automatically, starting
from a frontal pose in the center of the image, and at frontal
illumination. To initialize the optimization process, we use
a set of between 6 and 15 feature point coordinates [5]: The
manually defined 2D feature points (qx,j , qy,j) and the image
positions (px,kj

, py,kj
) of the corresponding vertices kj define

a function

EF =
X

j

‖

„

qx,j

qx,j

«

−

„

px,kj

py,kj

«

‖2
. (6)

that is minimized along with the image difference EI in the
first iterations.

In order to avoid overfitting effects that are well-known
from regression and other statistical problems (see [7]), we
add regularization terms to the cost function that penalize
solutions that are far from the average in terms of shape,
texture, or the rendering parameters:

Ereg =
X

i

α2

i

σ2

S,i

+
X

i

β2

i

σ2

T,i

+
X

i

(ρi − ρi)
2

σ2

R,i

. (7)
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Figure 3: Examples from the dataset of 35 static
3D laser scans forming the vector space of mouth
shapes and facial expressions. 17 scans show differ-
ent visemes, others show the mouth opening gradu-
ally.

ρi are the standard starting values for ρi, and σR,i are
ad–hoc estimates of their standard deviations. The full cost
function

E =
1

σ2

I

EI +
1

σ2

F

EF + Ereg (8)

can be derived from a maximum-a-posteriori approach
that maximizes the posterior probability of α, β and ρ, given
Iinput and the feature points [4, 5]. The optimization is per-
formed with a Stochastic Newton Algorithm [5]. The fitting
process takes 3 minutes on a 3.4GHz Xeon processor.

The linear combination of textures Ti cannot reproduce
all local characteristics of the novel face, such as moles or
scars. We extract the person’s true texture at high res-
olution from the image by an illumination-corrected tex-
ture extraction algorithm [4]. At the boundary between the
extracted texture and the predicted regions, we produce a
smooth transition based on a reliability criterion for texture
extraction that depends on the angle between the viewing
direction and the surface normal. Structures that are visi-
ble on one and occluded on the other side of the face can be
reflected, due to facial symmetry.

4. FACIAL ANIMATION IN IMAGES
The Morphable Model can not only represent variations

across the faces of different persons, but also changes in
shape and texture of an individual face due to facial ex-
pressions. Morphing between such face vectors generates
smooth, continuous transitions as they occur over time t

when a face moves:

S(t) = (1 − λ(t)) · Sexpression1 + λ(t) · Sexpression2, (9)

with a scalar function λ(t) that controls the rate at which
the face transforms from expression 1 to expression 2.

Unlike previous approaches to facial animation, such as
parameterized models that are designed by artists (for an
overview, see [11]) or models that simulate the physical prop-
erties of muscles and tissue [13], our technique relies entirely

on observations of facial expressions on human faces. An au-
tomated algorithm learns how points on the surface move as
a person acts or speaks, and these movements can be trans-
ferred to novel faces.

In order to learn the degrees of freedom of faces in facial
expressions and speech from data, we recorded a set of 35
static laser scans of one person (Figure 3). 17 of the scans
show different visemes, which are the basic mouth shapes
that occur in human speech. Mouth movements and ex-
pressions learned from these scans can then be transferred
to new individuals by a simple vector operation (Figure 2):

∆Sexpression = Sexpression,person1 − Sneutral,person1 (10)

Sexpression,person2 = Sneutral,person2 + ∆Sexpression. (11)

This simple linear approach assumes that the deformations
of faces are identical for all individuals, which is only an
approximation of the individual expressions observed in real
faces. A full investigation and a statistical analysis of the in-
dividual differences in expressions requires a large database
of different persons’ expressions [15]. One of the challenges
in this approach is to extrapolate to novel, unknown faces,
and to avoid overfitting and other statistical problems. Our
direct transfer of expressions, therefore, is a safe guess at
the price of missing some of the idiosyncrasies.

To convert the scan data into shape and texture vectors
of the Morphable Model, it is essential to compute dense
point-to-point correspondence between different expressions
in the same way as between scans of individuals (Section 2).
However, the large differences in geometry between open and
closed mouth scans, and the fact that surface regions such
as the teeth are visible in some mouth poses and occluded in
others, make this problem significantly more difficult, and
requires additional techniques as described in [2]. Unlike the
face, which is morphed in a non-rigid way during animation,
the teeth are rigid surface elements located behind the lips
in 3D space. Their position is fixed with respect to the
head (upper teeth) or the chin (lower teeth). Taken from a
single, open mouth scan of the subject shown in Figure 3,
these teeth can be inserted into novel 3D faces by a simple
scale and translation operation, based on the positions of the
corners of the mouth [2]. Figure 4 shows a set of examples.
In paintings, the strokes of the brush are captured by the
high-resolution texture extracted from the image.

5. EXCHANGING FACES IN IMAGES
The Morphable Model and the fitting procedure described

in Section 3 achieve a full separation of parameters that are
characteristic for an individual, i.e. shape and texture, from
scene parameters that are specific for a given image, such as
pose and illumination. Therefore, it is straight forward to
exchange faces in images by replacing the shape and texture
parameters α β or vectors S and T, while keeping the scene
parameters unchanged [3]. This process is summarized in
Figure 7.

The Morphable Model only covers the face, including fore-
head, ears and neck, but not the back of the head and the
shoulder. We leave these unchanged by using the original
image as a background to the novel face. Alpha blend-
ing along the cutting edges of the facial surface produces
a smooth transition between original and modified regions.
In contrast to cutting edges, the occluding contours along



Figure 4: Reconstructed from the original images (left column), 3D shape can be modified automatically to
form different mouth configurations. The paintings are Vermeer’s “Girl with a Pearl Earring”, Tischbein’s
Goethe, Raphael’s St. Catherine, and Edward Hopper’s self-portrait. The bottom left image is a digital
photograph. The wrinkles are not caused by texture, but entirely due to illuminated surface deformations.
In the bottom-right image, they are emphasized by more directed illumination. Teeth are transferred from
3D scans (Figure 3). The open mouth in Vermeer’s painting was closed by our algorithm automatically by
projecting the reconstructed shape vector on the subspace of neutral faces (top row, second image).



Source Image (customer) Target Images (hairstyles)

Figure 5: In a virtual try-on for hairstyles, the customer (top, left) provides a photograph, and selects target
images of hairstyles (top, right). Then, the system creates synthetic images of the customers face pasted into
these hairstyles.

the silhouette of the face are not blended with the back-
ground, but drawn as sharp edges. When the novel face is
smaller or more skinny than the original face, the original
silhouette would be visible next to the contour of the 3D
model. In order to prevent this from happening, we have
proposed a simple algorithm that removes the original sil-
houette line from the background image. In that image, the
algorithm reflects pixels from outside of the face across the
silhouette to the inside (Figure 7, see [3] for details.) This
can be done automatically, because the original contour line
is known from the projection of the reconstructed 3D model
of the original face.

In some images, strands of hair or other objects occlude
part of the facial surface. For these cases, we have proposed
a simple compositing algorithm. Based on pixel luminance
and with some additional, manual interaction, an alpha map
for the foreground structures is created, and with this alpha

map, the original image is composited on top of the new face
(Figure 7.)

The algorithm has a number of applications in image pro-
cessing, for example in consumer software for digital im-
age processing, and in projects such as a virtual try-on for
hairstyles (Figure 5.) If applied to image sequences, it could
also be interesting for video post-processing.

6. LEARNING-BASED MODIFICATION OF
HIGH-LEVEL ATTRIBUTES

Interactive control of perceptually meaningful features of
faces, such as skinny versus obese appearance, involves global
changes of face shape and texture, unlike the local changes in
pixel values or vertex positions in 2D image processing and
3D mesh editing, respectively. One way of providing such
tools would be to collect a set of deformation patterns, sim-



Gender Body Weight Cheek Bones Chin Shape Eyes-Eyebrows Head Shape

feminine skinny protruding round distant triangular
masculine obese weak pointed close square

Figure 6: Learned from labeled examples, facial attributes can be manipulated in 3D faces automatically,
and in combination with 3D shape reconstructions, manipulations can be performed within given portraits at
any pose and illumination. Attributes in regions such as the eyes are treated as global shape vectors, which
reveals correlations between different regions of the face observed in the data. For example, the distance
between eyes and eyebrows turns out to be correlated with chin shape (fifth column). This correlation can
be suppressed by setting vector components of a to zero outside of the region of interest, which makes the
changes local.

ilar to the facial expressions in Section 4, that are manually
defined, and apply those to novel faces automatically within
the framework of the Morphable Model. However, modeling
such deformations would be a challenging task that requires
careful observation of human anatomy, and artistic skill to
implement these observations on a prototype face. Instead,
we propose an approach that only involves human ratings
of attributes, such as skinniness, rather than any kind of
description. Rating is a much easier task for humans, and
it can be performed even on the most subjective attributes,
such as attractiveness of faces. Based on ratings of a set
of example data (shape vectors or texture vectors of faces),
we compute a vector that can be added to or subtracted
from a given face to change the attribute, while all other
attributes and the individual characteristics of the face are
left unchanged.

Let xi, i = 1...m, be a set of sample vectors (shape or
texture), and bi ∈ R be the ratings of a given attribute
for these 3D faces. bi can be either given as ground truth,
e.g. for gender, or based on subjective ratings by the user.
Our approach is to estimate a function f that assigns at-
tribute values to faces, and then follow the gradient of this
function in order to achieve a given change in attribute at a
minimal, most plausible change in appearance [4, 1]. Given
the limited set of data, we choose a linear regression for f ,
and minimize the least squares error

E =

m
X

i=1

(f(xi) − bi)
2
. (12)

It can be shown that the gradient a of the optimal func-
tion f depends on an appropriate definition of the distance
measure in face space. A perceptually meaningful distance

measure is given by the probability distribution of faces in
terms of PCA [1]. Then, the optimal vector for changing
attributes turns out to be a simple weighted sum of the ex-
ample data (for details, see [1]):

a =
1

m

m
X

i=1

bixi. (13)

Adding multiples x 7→ x + λa, with λ ∈ R, will change
facial attributes in the desired way and leave all character-
istics that are uncorrelated with the attribute unchanged.
We would like to point out that the linear attribute func-
tion f is only a first order approximation of the correct,
non-linear function. Still, our results indicate that for many
attributes, this approximation provides an effective tool for
face modeling (Figure 6.)

7. CONCLUSION
We have presented a framework for high-level manipu-

lation of faces in existing image material. Our approach
exploits prior knowledge about classes of objects that is
learned automatically from a dataset of examples. We have
shown results only for the class of human faces, but it can
be extended to other relevant classes of objects, such as full
human bodies and animals or perhaps even vehicles or build-
ings. The approach is very general in terms of the imaging
conditions due to the internal 3D representation of the ob-
ject class. We believe that the link between image-based and
3D-based image processing is a promising strategy to pursue
in the future. The overall system, as it has been described
in this paper, is an example of how computer graphics is
adapted to humans in terms of content, users and viewers.



Figure 7: For transferring a face from a source image
(top, center) to a target (top, left), the algorithm
builds a composite of three layers (bottom row): An
estimate of 3D shape and scene parameters (“pose”)
from the target image helps to remove the contour
of the original face in the background (left). The
scene parameters of the target are also used to ren-
der the 3D face reconstructed from the source image
(center column). A semi-automatic segmentation of
hair defines the transparency mask for the hairstyle
in the top layer (right column).
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