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Abstract

This paper presents a top-down approach to 3D data
analysis by fitting a Morphable Model to scans of faces.
In a unified framework, the algorithm optimizes shape, tex-
ture, pose and illumination simultaneously. The algorithm
can be used as a core component in face recognition from
scans. In an analysis-by-synthesis approach, raw scans are
transformed into a PCA-based representation that is robust
with respect to changes in pose and illumination. Illumina-
tion conditions are estimated in an explicit simulation that
involves specular and diffuse components. The algorithm
inverts the effect of shading in order to obtain the diffuse re-
flectance in each point of the facial surface. Our results in-
clude illumination correction, surface completion and face
recognition on the FRGC database of scans.

1. Introduction
Face recognition from 3D scans has become a very active

field of research due to the rapid progress in 3D scanning
technology. In scans, changes in pose are easy to compen-
sate by a rigid transformation. On the other hand, range data
are often noisy and incomplete, and using shape only would
ignore many person-specific features such as the colors of
the eyes.

The main idea of our approach is to exploit both shape
and texture information of the input scan in a simultane-
ous fitting procedure, and to use a 3D Morphable Model for
a PCA-based representation of faces. Our method builds
upon an algorithm for fitting a Morphable Model to pho-
tographs [6]. We generalize this algorithm by including
range data in the cost function that is optimized during fit-
ting. More specifically, the algorithm synthesizes a random
subset of pixels from the scan in each iteration by simulat-
ing rigid transformation, perspective projection and illumi-
nation. In an iterative optimization, it makes these as sim-
ilar as possible to the color and depth values found in the
scan. Based on an analytical derivative of the cost function,
the algorithm optimizes pose, shape, texture and lighting.
For initialization, the algorithm uses a set of about 7 feature
points that have to be defined manually, or may be identified

automatically by feature detection algorithms.
One of the outputs of the system is a set of model coef-

ficients that can be used for face recognition. Moreover, we
obtain a textured 3D model from the linear span of example
faces of the Morphable Model. The fitting procedure es-
tablishes point-to-point correspondence of the model to the
scan, so we can sample the veridical cartesian coordinates
and color values of the scan, and substitute them in the face
model. The result is a resampled version of the original
scan that can be morphed with other faces. We estimate and
remove the effect of illumination, and thus obtain the ap-
proximate diffuse reflectance at each surface point. This is
important for simulating new illuminations on the scan.

The contributions of this paper are:
• An algorithm for fitting a model to shape and texture

simultaneously,
• The algorithm is specifically designed for perspective

projection, which is found in most scanners, such
as structured light scanners, time-of-flight scanners
and those laser scanners that have a fixed center of
projection,

• Compensation of lighting effects as an integrated part
of the fitting procedure,

• Simulation of both specular and diffuse reflection,
• Model-based handling of saturated color values in

the texture (which are common in scans and pose
problems to non model-based approaches), and

• A comparison between recognition from photographs
(textures) only, with recognition from scans in a so-
phisticated, model-based algorithm.

2. Related Work
Many of the early methods on face recognition from

range data have relied on feature points, curvatures or
curves [8, 16, 13, 4]. Other geometrical criteria include
Hausdorff-distance [17], free-form surfaces and point sig-
natures [25, 10], or bending-invariant canonical forms for
surface representation [7].

Similar to the Eigenface approach in image data, several
authors have applied Principal Component Analysis (PCA)
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Figure 1. From a raw input scan (first and second column, top and bottom), the fitting procedure generates a best fit within the vector
space of examples (third column). Shape and texture sampling (Section 5) includes the original data into the reconstructed model wherever
possible (fourth column). Note that the algorithm has automatically removed lighting effects, including the saturated color values.

to range data after rigid alignment of the data [2, 1, 14, 9,
28], or after registration in the image plane using salient
features [15].

In 3D Morphable Models, PCA is not applied to the
depth or radius values, but to the cartesian coordinates of
surface points [5]. It is important that prior to PCA, the
scans are registered in a dense point-by-point correspon-
dence using a modified optical flow algorithm that identifies
corresponding features in the range data [5]. This algorithm
has only been used for building the Morphable Model, but
not for recognizing faces in new scans, which would proba-
bly be possible. The Morphable Model has been studied in
the field of image analysis and shape reconstruction [5, 6].

On a very general level, it is a powerful approach to
identify corresponding features in order to solve recognition
problems. In face recognition from images, this is reflected
in the paradigm shift from Eigenfaces [26] to Morphable
Models [27, 5] and Active Appearance Models [11]. Corre-
sponding features may either be found by dedicated feature
detectors, or by an iterative fitting procedure that minimizes
a distance function.

A number of algorithms have been presented for the
alignment of face scans. Unlike Iterative Closest Point
(ICP) algorithms [3], which is designed for registering parts
of the same surface by a rigid transformation, these can be
used to register scans of different individuals.

Blanz and Vetter briefly describe an algorithm for fitting
the Morphable Model to new 3D scans [5]: In an analysis-
by-synthesis loop that is similar to their image analysis al-
gorithm [5, 6], the algorithm strives to reproduce the radius
values of cylindrical CyberwareTM scans by a linear com-
bination of example faces and a rigid transformation. The
algorithm minimizes the sum of square distance of the ra-
dius and texture values of the model to those of the input
scan. Our algorithm takes this approach several steps fur-

ther by posing the problem of 3D shape fitting as a gen-
eralized problem of fitting to images, by dealing with the
natural representation of most 3D scanners, which is based
on perspective projection, and by taking illumination into
account.

Zhang et al. [29] presented a method that tracks a face
model during a 3D motion sequence, and that fits a tem-
plate mesh to the initial frame. Similar to our approach,
they project the model to the image plane of the depth map,
and update the shape such that it follows the shape with
minimal changes. They use texture to track the motion of
points in the image plane during the sequence by an optical
flow algorithm.

Mao et al [21] use elastic deformation of a generic
model, starting from manually placed landmarks. For a
comparison of untextured scans, Russ et al. [24] detect five
facial features, perform ICP and a subsequent normal search
to establish correspondence between an input scan and a ref-
erence face. Face recognition is then based on PCA coeffi-
cients of shape vectors. Unlike this algorithm, our approach
deforms the PCA-based model to fit the input scan, solving
the problem of correspondence and PCA decomposition si-
multaneously. Mian et al. [22] compare pairs of scans using
a hybrid system that uses feature points, ICP of the nose and
forehead areas, and PCA.

While the previous algorithms did not account for illu-
mination effects in the scans, Malassiotis and Strintzis [20]
use the depth information of scans for face detection, pose
estimation and a warp-based rectification of the input image
(texture of the scan). To make the system robust with re-
spect to illumination, the faces in the database are rendered
with different lightings, and a Support Vector Machine is
trained on these data.

Lu et al. [19] construct a 3D model of a face by combin-
ing several 2.5D scans, and then match this to a new probe



scan by coarse alignment based on feature points, and fine
alignment based on ICP. Root mean square distance is used
as a measure for shape similarity. On a set of candidates,
they synthesize different shadings of their textures, and use
LDA for a comparison with the probe texture. Unlike this
work, we fit a deformable model to the scan, and integrate
this with a closed analysis-by-synthesis loop for simulating
the effect of lighting on texture. Lu and Jain [18] consider
non-rigid deformations due to facial expressions, and iter-
atively optimize in alternating order the rigid transforma-
tion by ICP, and the expression by minimizing the sum of
squared distances. Texture is not estimated in this work. In
contrast, we optimize rigid transformation, non-rigid defor-
mation, texture and lighting in a unified framework.

3. A Morphable Model of 3D Faces
This section summarizes how a Morphable Model of

3D faces[27, 5] is built from a training set of 200 textured
CyberwareTM laser scans that are stored in cylindrical co-
ordinates. These scans cover most of the facial surface from
ear to ear, and are relatively high quality, but it takes about
20 seconds to record a full scan because the sensor of the
scanner moves around the persons’ heads. In Section 4, this
general Morphable Model will be applied to input scans of
new individuals recorded with a scanner that uses a perspec-
tive projection.

In the Morphable Model, shape and texture vectors are
defined such that any linear combination of examples

S =

m∑

i=1

aiSi, T =

m∑

i=1

biTi. (1)

is a realistic face if S, T are within a few standard deviations
from their averages. In the conversion of the laser scans of
the training set into shape and texture vectors Si, Ti, it is
essential to establish dense point-to-point correspondence
of all scans with a reference face to make sure that vector
dimensions in S, T describe the same point, such as the
tip of the nose, in all faces. Correspondence is computed
automatically using optical flow [5].

Each vector Si is the 3D shape, stored in terms of x, y, z-
coordinates of all vertices k ∈ {1, . . . , n}, n = 75972 of a
3D mesh:

Si = (x1, y1, z1, x2, . . . , xn, yn, zn)T . (2)

In the same way, we form texture vectors from the red,
green, and blue values of all vertices’ surface colors:

Ti = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T . (3)

Finally, we perform a Principal Component Analysis
(PCA) to estimate the principal axes si, ti of variation
around the averages s and t, and the standard deviations
σS,i and σT,i. The principal axes form an orthogonal basis,
so

S = s +

m∑

i=1

αi · si, T = t +

m∑

i=1

βi · ti. (4)

4. Model-Based Shape Analysis
The fitting algorithm is a generalization of a model-

based algorithm for image analysis [6]. As we have pointed
out above, most 3D scans are parameterized and sampled in
terms of image coordinates u, v in a perspective projection.
In each sample point, the scan stores the r, g, b component
of the texture, and the cartesian coordinates of x, y, z of the
point, so we can write the scan as

Iinput(u, v) = ( r(u, v), g(u, v), b(u, v),

x(u, v), y(u, v), z(u, v))T . (5)

The algorithm solves the following optimization prob-
lem: Given Iinput(u, v), find the shape and texture vectors
S, T, the rigid pose transformation, camera parameters and
lighting such that

1. the camera produces a color image that is as similar
as possible to the texture r(u, v), g(u, v), b(u, v), and

2. the cartesian coordinates of the surface points fit the
shape of x(u, v) = (x(u, v), y(u, v), z(u, v))T .

Solving the first problem, which is equivalent to the
3D shape reconstruction from images [6], uniquely de-
fines the rigid transformation and all the other parameters:
Points such as the tip of the nose, which have coordinates
xk = (xk, yk, zk)T within the shape vector S, are mapped
by the rigid transformation and the perspective projection to
a pixel uk, vk in the image, and the color values in this pixel
should be reproduced by the estimated texture and lighting.

The same perspective projection solves the second prob-
lem, because the pixel uk, vk also stores the 3D coordinates
of the same point, x(uk, vk). However, the 3D coordinates
will, in general, differ by a rigid transformation that depends
on the definition of coordinates by the manufacturer of the
scanner.

The algorithm, therefore, has to find two rigid transfor-
mations, one that maps the Morphable Model to camera co-
ordinates such that the perspective projection fits with the
coordinates uk, vk, and one that aligns the coordinate sys-
tem of the model (in our case the camera coordinates) with
the coordinate system of the scanner. We separate the two
problems by pre-aligning the scans with our camera coor-
dinate system in a first step. Before we describe this align-
ment, let us introduce some notation.

4.1. Rigid Transformation and Perspective Projec-
tion

In our analysis-by-synthesis approach, each vertex k

is mapped from the model-based coordinates xk =
(xk, yk, zk)T in S (Equation 2) to the screen coordinates
uk, vk in the following way:



input texture texture texture and shape texture and shape sampling

Figure 2. If the reconstruction is computed only from the input texture (first image), the algorithm estimates the most plausible 3D shape
(second image), given the shading and shape of the front view. Fitting the model to both texture and shape (third image) captures more
characteristics of the face, which are close to the ground truth that we obtain when sampling the texture and shape values (right image).

A rigid transformation maps xk to a position relative to
the camera:

wk = (wx,k , wy,k , wz,k)T = RγRθRφxk + tw. (6)

The angles φ and θ control in-depth rotations around the
vertical and horizontal axis, γ defines a rotation around the
camera axis, and tw is a spatial shift.

A perspective projection then maps vertex k to image
plane coordinates uk, vk:

uk = u0 + f
wx,k

wz,k

, vk = v0 − f
wy,k

wz,k

. (7)

f is the focal length of the camera which is located in
the origin, and u0, v0 defines the image-plane position of
the optical axis (principal point).

4.2. Prealignment of Scans
In the scan, the 3D coordinates found in uk, vk are

x(uk, vk). The camera of the scanner mapped these to
uk, vk, so we can infer the camera calibration of the scanner
and thus

1. transform the scan coordinates x(u, v) to camera co-
ordinates w(u, v), i.e. estimate the extrinsic camera param-
eters.

2. estimate the focal length (and potentially more in-
trinsic camera parameters), and use these as fixed, known
values in the subsequent model fitting.

In fact, the prealignment reverse-engineers the camera
parameters that have been used in the software of the scan-
ner from redundancies in the data. In the well-known litera-
ture on camera calibration, there are a number of algorithms
that could be used for this task. For simplicity, we modified
the model fitting algorithm [6] that will be used in the next
processing step anyway. This makes sure that the definition
of all camera parameters is consistent in both steps. The
modified algorithm solves the non-linear problem of cam-
era calibration iteratively.

First, we select n = 10 random non-void points ui, vi

from the scan, and store their coordinates x(ui, vi). Equa-
tions (6) and (7) map these to image plane coordinates
u′

i, v
′

i. This defines a cost function

Ecal(φ, θ, γ, tw, f) =
∑n

i=1
(u′

i − ui)
2 + (v′

i − vi)
2.

We find the minimum of Ecal by Newton’s algorithm,
using analytic derivatives of the rigid transformation and
the perspective projection (6), (7). Using the rigid trans-
formation (6), we map all scan coordinates x(u, v) to our
estimated camera coordinates w(u, v).

4.3. Fitting the Model to Scans
The fitting algorithm finds the model coefficients, rigid

transformation and lighting such that each vertex k of the
Morphable Model is mapped to image plane coordinates
uk, vk such that the color values are matched and that the
camera coordinates wz,k of the model are as close as possi-
ble to the camera coordinates wz(uk, vk) of the scan. Note
that we only fit the depth wz of the vertices: The frontopar-
allel coordinates wx and wy are fixed already by the fact
that the model point and the scan point are in the same im-
age position uk, vk, and an additional restriction in wx and
wy would prevent the model from sliding along the surface
to find the best match in terms of feature correspondence.

In order to fit the model to the texture of the scan, the
algorithm has to compensate effects of illumination and of
the overall color distribution.

4.3.1 Illumination and Color
We assume that the scanning setup involves similar lighting
effects as a standard photograph. We propose to simulate
this explicitly, in the same way as it has been done for fit-
ting a model to images [6]. This paragraph summarizes the
steps involved in image synthesis, which will be part of the
analysis algorithm.

The normal vector to a triangle k1k2k3 of the Morphable
Model is given by a vector product of the edges, n = (xk1

−
xk2

)× (xk1
−xk3

), which is normalized to unit length, and
rotated along with the head (Equation 6). For fitting the
model to an image, it is sufficient to consider the centers of
triangles only, most of which are about 0.2mm2 in size. 3D
coordinate and color of the center are the arithmetic means
of the corners’ values. In the following, we do not formally
distinguish between triangle centers and vertices k.

The algorithm simulates ambient light with red, green,



Figure 3. The textures on the right have been sampled from the
scans in the left column. The inversion of illumination effects has
removed most of the harsh lighting from the original textures. The
method compensates both the results of overexposure and inho-
mogeneous shading of the face.

and blue intensities Lr,amb, Lg,amb, Lb,amb, and directed
light with intensities Lr,dir, Lg,dir, Lb,dir from a direction
l defined by two angles θl and φl:

l = (cos(θl) sin(φl), sin(θl), cos(θl) cos(φl))
T . (8)

The illumination model of Phong (see [12]) approxi-
mately describes the diffuse and specular reflection of a sur-
face. In each vertex k, the red channel is

Lr,k = Rk ·Lr,amb+Rk ·Lr,dir ·〈nk, l〉+ks·Lr,dir 〈rk, v̂k〉
ν

(9)

where Rk is the red component of the diffuse reflec-
tion coefficient stored in the texture vector T, ks is the
specular reflectance, ν defines the angular distribution of
the specular reflections, v̂k is the viewing direction, and
rk = 2 · 〈nk, l〉nk− l is the direction of maximum specular
reflection [12].

Depending on the camera of the scanner, the textures
may be color or gray level, and they may differ in overall
tone. We apply gains gr, gg, gb, offsets or, og, ob, and a
color contrast c to each channel. The overall luminance L

of a colored point is [12]
L = 0.3 · Lr + 0.59 · Lg + 0.11 · Lb. (10)

Color contrast interpolates between the original color
value and this luminance, so for the red channel we set

r = gr · (cLr + (1 − c)L) + or. (11)

Green and blue channels are computed in the same way.
The colors r, g and b are drawn at a position (u, v) in the
final image Imodel.

4.3.2 Optimization
Just as in image analysis [6], the fitting algorithm optimizes
shape coefficients α = (α1, α2, . . .)

T and texture coef-
ficients β = (β1, β2, . . .)

T along with 21 rendering pa-
rameters, concatenated into a vector ρ, that contains pose
angles φ, θ and γ, 3D translation tw, ambient light in-
tensities Lr,amb, Lg,amb, Lb,amb, directed light intensities
Lr,dir, Lg,dir, Lb,dir, the angles θl and φl of the the directed
light, color contrast c, and gains and offsets of color chan-
nels gr, gg, gb, or, og, ob. Unlike [6], we keep the focal
length f fixed now.

The main part of the cost function is a least-squares dif-
ference between the transformed input scan

Iinput(u, v) = (r(u, v), g(u, v), b(u, v), wz(u, v))T (12)

and the values Imodel synthesized by the model

EI =
∑

u,v

(Iinput − Imodel)
T Λ(Iinput − Imodel) (13)

with a diagonal weight matrix Λ that contains an empir-
ical scaling value between shape and texture, which is 128
in our system (depth is in mm, texture is in {0, ..., 255}.)

For initialization, another cost function is added to EI

that measures the distances between manually defined fea-
ture points j in the image plane, uinit,j , vinit,j , and the im-
age coordinates of the projection umodel,kj

, vmodel,kj
of the

corresponding, manually defined model vertices kj :

EF =
∑

j

‖

(
uinit,j

vinit,j

)
−

(
umodel,kj

vmodel,kj

)
‖2. (14)

This additional term pulls the face model to the approx-
imate position in the image plane in the first iterations. Its
weight is reduced to 0 during the process of optimization.

To avoid overfitting, we apply a regularization by adding
penalty terms that measure the PCA-based Mahalanobis
distance from the average face and the initial parameters
[6, 5]:

E = ηIEI +ηF EF +
∑

i

α2

i

σ2

S,i

+
∑

i

β2

i

σ2

T,i

+
∑

i

(ρi − ρi)
2

σ2

R,i

.

(15)

Ad-hoc choices of ηI and ηF are used to control the rel-
ative weights of EI , EF , and the prior probability terms
in (15). At the beginning, prior probability and EF are
weighted high. The final iterations put more weight on EI ,
and no longer rely on EF .

Triangles that are invisible due to self-occlusion of the
face are discarded in the cost function. This is tested by a
z-buffer criterion. Also, we discard shape data that are void
and colors that are saturated. The algorithm takes cast shad-
ows into account in the Phong model, based on a shadow-
buffer criterion.



Sample A Morph Sample B

Figure 4. Morph between the 3D face on the left and the face on the right. They both are in correspondence to the reference face due to the
reconstruction using the Morphable Model and the sampling procedure. In the morph (middle), facial features are preserved while regions
without remarkable characteristics are averaged smoothly.

The cost function is optimized with a stochastic version
of Newton’s method [6]: The algorithm selects 40 random
triangles in each iteration, with a probability proportional to
their area in the u, v domain, and evaluates EI and its gradi-
ent only at their centers. The gradient is computed analyti-
cally using chain rule and the equations of the synthesis that
were given in this section. After fitting the entire face model
to the image, the eyes, nose, mouth, and the surrounding re-
gion are optimized separately. The fitting procedure takes
about 4 minutes on a 3.4 GHz Xeon processor.

5. Shape and Texture Sampling
After the fitting procedure, the optimized face is repre-

sented as a shape vector S and a texture vector T. Note
that the texture values describe the diffuse reflectance of the
face in each point, so the effect of illumination, which was
part of the optimization problem, has already been compen-
sated by the algorithm. However, both S and T are linear
combinations of examples (Section 3), and they do not cap-
ture all details in shape or texture found in the original scan.
For computer graphics applications, we can therefore sam-
ple the shape and texture of the original surface using the
following algorithm, which is an extension of [5]:

For each vertex k, the optimized model and camera pa-
rameters predict an image-plane position uk, vk. There, we
find the coordinates of the scanned point in camera coordi-
nates, w(uk, vk) (Section 4.2). By inverting the rigid trans-
formation (6) with the model parameters of the model fitting
procedure (Section 4.3), we obtain coordinates that are con-
sistent with the vertex coordinates xk in S and can replace
them. If the point uk, vk in the scan is void or the distance
to the estimated position exceeds a threshold, the estimated
value is retained.

In the color values in uk, vk, the effects of shading and
color transformation have to be compensated. With the op-
timized parameters, we invert the color transformation (11),
subtract the specular highlight (9) which we can estimate
from the estimated light direction and surface normal, and
divide by the sum of ambient and diffuse lighting to obtain
the diffuse reflectances Rk, Gk, Bk. Note that the sampled
scan is now a new shape and texture vector that is in full
correspondence with the Morphable Model.

5.1. Saturated Color Values

In many scans and images, color values are saturated due
to overexposure. On those pixels in the raw scan texture, the
red, green or blue values are close to 255. We do not per-
form texture sampling in these pixels, because the assump-
tions of our illumination model are violated, so the inver-
sion would not give correct results. Instead, the algorithm
retains the estimated color values from the previous section.
The model-based approach and the explicit simulation of
lighting proves to be very convenient in this context.

For a smooth transition between sampled and estimated
color values, the algorithm creates a lookup-mask in the
u, v domain of the original scan, blurs this binary mask and
uses the continuous values from the blurred mask as relative
weights of sampled versus estimated texture. As a result, we
obtain a texture vector that captures details of the eyes and
other structures, but does not contain the specular highlights
of the original data.

6. Results
We have tested the algorithm on a portion of the Face

Recognition Grand Challenge (FRGC, [23].) We selected
pairs of scans of 150 individuals, taken under uncontrolled
conditions. The scans of each person were recorded on
two different days. For fitting, we used the 100 most rel-
evant principal components. We manually clicked 7 points
in each face, such as the corners of the eyes and the tip of
the nose.

Figure 1 shows a typical result of fitting the model to one
of the scans. Given the shape and texture (top left image),
which we rendered from novel viewpoints in the second col-
umn of the Figure, we obtained a best fit shown in the third
column. The profile view of the reconstructed face shows
many characteristic features of the face, such as the curved
nose and the dent under the lower lip. To go beyond the lin-
ear span of examples, we sampled the true shape and texture
of the face (right column). The images show that the recon-
structed surface (at the ears) and the sampled surface are
closely aligned. The mean depth error |wz,k − wz(uk, vk)|
between the vertices of the reconstruction in Figure 1 and
the ground truth scan was 1.88 mm. The mean error on
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Figure 5. ROC curves of verification across the two sets A and B. In the case of 3D-3D verification, at 1 percent false alarm rate, the hit
rate is 92 % for both types of comparison (A(3D)/B(3D) in the left image and B(3D)/A(3D) in the right image).

all 2 · 150 scans was 1.02 mm when neglecting outliers
above an euclidean distance of 10 mm and vertex viewing
angles above 80◦. The average percentage of outliers per
face is 24%. When including also the outliers into the aver-
age mean error for all 2 · 150 scans, the result is 2.74 mm .
Figure 2 shows an additional set of results and demonstrates
how the 3D information improves the reconstruction of the
profile from the front view.

As shown in Figure 1, the texture of the reconstructed
and of the sampled face are normalized in terms of lighting
and overall hue, so they can be used for simulating new illu-
mination in computer graphics. To show how the algorithm
removes lighting effects, Figure 3 gives a side-by-side com-
parison of two textures that were reconstructed and sampled
from two different harsh illuminations. The result shows
that the saturation of color values and the shading are re-
moved successfully, and only a relatively small difference
between the textures remains, so the textures are ready for
simulating new illuminations.

In Figure 4, we show how two of the scans (the one from
Figure 1 and the right face in Figure 4), can be morphed
within the framework or the Morphable Model. This is due
to the fact that both the reconstructed and the sampled faces
are in correspondence with the reference face.

Finally, we investigated a face recognition scenario with
our algorithm, and evaluated how the additional shape infor-
mation improves the performance compared to the image-
only condition. After model fitting, we rescaled the model
coefficients to αi

σS,i
and βi

σT,i
and concatenated them to a co-

efficient vector. By using 100 coefficients for shape and tex-
ture for the entire face and the segments eyes, nose, mouth
and the surrounding region each, this adds up to 1000 di-
mensions. As a criterion for similarity, we used the scalar
product. This is the same method as in [6]. We also per-
formed a PCA of intra-object variation, and compensated
for these variations [6]. Intra-object PCA was done with
reconstructions from other faces that are not in the test set,
and on image- or scan-based reconstructions for the image-
or scan-based recognition. In the cross-modal condition, we

used the intra-object PCA pooled from reconstructions from
scans and from images.

Table 1 gives the percentage of correct identification for
a comparison of scans versus scans, images versus images,
and cross-modal recognition. The results in Table 1 indi-
cate that the use of range data improves the performance,
compared to the image-only condition. This is also shown
in the ROC curve (Figure 5). The cross-modal condition is
competitive to 2D-2D in verification, but not yet in iden-
tification. We plan a more sophisticated treatment of the
intra-person variation between reconstructions from scans
and those from images, but the results show already that the
joint representation in the Morphable Model is a viable way
for cross-modal recognition.

Gallery Probe Correct Ident. intraPCA
A(3D) B(3D) 96.0 3D
B(3D) A(3D) 92.0 3D
A(2D) B(2D) 84.7 2D
B(2D) A(2D) 79.3 2D
A(3D) B(2D) 71.3 2D and 3D
B(3D) A(2D) 66.0 2D and 3D
A(2D) B(3D) 66.7 2D and 3D
B(2D) A(3D) 70.0 2D and 3D

Table 1. Percentages of correct identification of n=150 individuals
in two sets of scans (A and B), comparing scans (3D shape and
texture) or texture only (2D). The last four rows show cross-modal
recognition.

7. Conclusion
Our results demonstrate that analysis-by-synthesis is not

only a promising strategy in image analysis, but can also
be applied to range data. The main idea is to simulate ex-
plicitly the projection of surface data into pixels of a scan,
and the effects of illumination that are found in the texture.
The technique has a number of applications in biometric
identification, but also in Computer Graphics, for example
as a robust and reliable way to transform scans into shape
and texture vectors in a Morphable Model for animation and



other high-level manipulations. It can be used for bootstrap-
ping the Morphable Model [5] by including more and more
scans in the vector space of faces. The algorithm may also
be a tool for preprocessing raw scans, filling in missing re-
gions automatically, and registering multiple scans.
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