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Abstract
We presenta simplemethodfor relightingreal objectsviewedfroma �xed camera position.Insteadof settingup
a calibratedmeasurementdevice, such asa light stage, wemanuallysweepa spotlightover thewalls of a white
room,illuminating theobjectindirectly. In contrast to previousmethods,weusearbitrary andunknownangular
distributions of incominglight. Neither the incident light nor the re�ectancefunction needto be represented
explicitly in our approach.
Thenew methodreliesonimagesof a probeobject,for instancea black snooker ball, placednearthetargetobject.
Picturesof theprobein a novel illuminationaredecomposedinto a linear combinationof measuredimagesof the
probe. Then,a linear combinationof imagesof the target objectwith thesamecoef�cients producesa synthetic
image with the new illumination. We usea simpleBayesianapproach to �nd the mostplausibleoutput image,
giventhepictureof theprobeandthestatisticsobservedin thedatasetof samples.
Our resultsfor a variety of novel illuminations, including syntheticlighting by relativelynarrow light sources
aswell asnatural illuminations,demonstrate that thenew techniqueis a useful,low costalternativeto existing
techniquesfor a broadrangeof objectsandmaterials.

Categories and SubjectDescriptors(accordingto ACM CCS): I.3.7 [ComputerGraphics]:Three-Dimensional
GraphicsandRealismI.4.1[ImageProcessingandComputerVision]: DigitizationandImageCapture

1. Intr oduction

Example-basedrelightingof realobjectsor scenesfor novel
illuminationsthatwerecapturedin naturalenvironmentshas
proven to be a powerful approachin computergraphics,
producinga broad rangeof impressive results[ZWCS99,
DHT� 00,HWT� 04,TSE� 04,MDA02,MLP04,NN04]. Com-
plex effects such as subsurface scattering,interre�ection,
shadowing and refraction are capturedautomatically by
thesetechniques.
Most of thesemethodsexplicitly estimatethe re�ectance
function at eachvisible point of the object or scene.This
maybeachievedby calibratedpoint light sources,suchasa
light stage[DHT� 00,KBMK01,HWT� 04], wherethesetup
of the lights provides full control of the direction of inci-
dent illumination, or by methodsthat recover the light di-
rectionof a point light that is locatedin variouspositionsin
the room [MDA02]. A light stagecanalsobe usedto dis-
play light patterns,suchaspoint-sampledsphericalharmon-
ics [GTW� 04], for rapidcapturingof moving objects.
An alternative setupis to display controlledlight patterns
behindthescene[PD03,MLP04], asit is known from envi-
ronmentmatting[ZWCS99], or multiple binarypoint lights
thataredemultiplexed into single-lightresponses[SNB03].
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For uncontrolled,naturallightingduringmeasurements,Ma-
tusik et al. [MLP04] proposeda methodthat iteratively �ts
a re�ectancefunctionto themeasureddata,optimizingeach
point of thesceneindependentlyby quadraticprogramming
anda decompositionof there�ectanceinto rectangularker-
nels,given the angulardistribution of incidentdistantlight
in eachsampleimage.This incident light is known explic-
itly eitherfrom the illumination setup(a monitor),or from
imagesof a metallicsphere.This methodhasbeenusedfor
relightinga city view, basedon imagesrecordedover three
days.
For relighting, most authorscapturenovel, natural illumi-
nationswith mirror spheresusedaslight probes.The large
variationof radiancesobservedon thespheresis oftencap-
turedby high dynamicrange(HDR) imaging.Fromtheim-
ageof the sphere,the angulardistribution of the incident
distantlight canberecovered.Renderingthenew sceneex-
ploits the principle of superpositionof light in an elegant
way[DHT� 00]: if theprocessof capturingimagesis approx-
imatelylinear, animageof anobjectilluminatedby anenvi-
ronmentcanbedecomposedinto a weightedsumof images
from pre-recordedilluminations.Speci�cally, if thesample
imagesare recordedwith directionallight, the weightsfor
the�nal imageareobtainedfrom theoverall novel radiance
in theneighborhoodof eachsampleddirection.
Linear superpositionof light hasalso beenusedin light-
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Figure 1: Four relighting examples(top row) as linear combinationof 272 images,the coef�cients beingde�ned by novel
imagesof a probeobject(bottom,left imageof each pair) which are reconstructedwith thesampledprobeimages(right).

= l 1 � + l 2 � + � � � + l n �

� = l 1 � + l 2 � + � � � + l n �

probein
novel light

reconstruction trainingsamples

Figure 2: Relit scenein novel illumination aslinear combinationof n = 272previouslyrecordedimages(top row).Thecoef�-
cientsl j are foundby reproducingan imageof a probeobject(bottomrow),usinga maximum-a-posterioriestimate.

ing designalgorithmsthat rerendervirtual scenes[NJS� 94,
DKN� 95] or relight natural objects[ADW04a, ADW04b]
by combininga setof basisimages.In image-basedlight-
ing design,the userpaintsportionsof the target imagein
the desiredcolor, andquadraticprogrammingor simulated
annealingalgorithmscomputethe lighting setupthat repro-
ducesthe desiredappearance,which can be used to de-
terminethe settingsfor lighting the real object artistically
[ADW04a,ADW04b].
Our novel approachexploits the linear natureof light even
moreby treatingthere�ectancefunctionandtheangulardis-
tribution of incident (distant) light only implicitly, and by
transferringthelinearcoef�cients betweenimagesof aprobe
object,which de�nesa novel illumination to beusedfor re-
lighting,andimagesof thetargetobjectthatwill berelighted
(Figure2). Thesystemusesadatabaseof imagesbothof the
probeandtarget,takenin avarietyof sampleilluminations.
Whatevertheincidentlight mapsin thesampleimageswere,
theprincipleof superpositionimpliesthata linearcombina-
tion of thesesamplelight mapsproducesan imagethat is a
linear combinationof sampleimageswith the samecoef�-
cients.As aconsequence,imagesof differentobjectsplaced
in thesameenvironmentcanbedecomposedinto linearcom-
binationswith thesamecoef�cients. Our algorithmdecom-
posesa given imageof the probe in a novel illumination
into a linearcombinationof imagesfrom arbitrary, unknown
sampleilluminations.Then,we transferthe coef�cients to

thetargetobject,andobtaina linearcombinationpredicting
theappearanceof thetargetin thenovel illumination.
In a Bayesianapproach,our algorithm takes into account
the statisticalpropertiesof the sampledatain orderto �nd
the most plausibleimageof the target object (maximum-
a-posterioriestimate),given the imageof the probeobject
in a novel illumination. This statisticalcriterion avoids ar-
tifactsthat would occur in a direct reconstruction,for ex-
ample due to noise. Speci�cally, we form a tradeoff be-
tweenreproducingthe probeimageas faithfully as possi-
ble, and maximizing the prior probability of the illumina-
tion that might have given rise to this image,basedon the
distribution learnedfrom examples.This distribution canbe
estimatedevenwithoutexplicitly knowing theincidentlight
mapsL(w) by restrictingourselvesto thelinearspanof sam-
plelight maps,andperformingaprincipalcomponentanaly-
sison theprobeimagesratherthantheunknown light maps.

2. Implicit Relighting

For a �x ed viewpoint and a non-local incident light dis-
tribution L(w), with w denotingan incident light direction
w = (q; f ), theradianceobservedin apoint x of animageis

I (x) =
Z

W
L(w) � R(x;w)dw (1)

whereR(x;w) is there�ectance�eld [DHT� 00]. Rsubsumes
effectssuchasshadowing, foreshorteningof incident light
dueto the unknown surfacenormal,interre�ectionsamong
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surfaceelements,andsubsurfacescattering.The red,green
and blue color channelsare treatedseparatelythroughout
thispaper, andtheindicesfor colorchannelsaresuppressed.
In the classiclight stageapproach,R is sampledby direc-
tional light Li(q; f ) = d(q � qi ) � d(f � f i ) from discretedi-
rectionsqi , f i , expressedin termsof theDiracdeltafunction
d() . According to Equation(1), the imagesare thendirect
measurementsof R: Ii(x) = R(x;qi ; f i).
In contrast,our approachusesarbitrary, unknown incident
light distribution Li(w), i = 1; :::;n for sampling.The goal
of ourmeasurementis to sampleabasisof themostrelevant
subspaceof the vectorspaceof functionsL for subsequent
relighting of naturalobjects.Due to the principle of super-
position,linearcombinations

L(w) =
n

å
i= 1

l i � Li(w) (2)

arephysicallyvalid incidentlight distributionsfor all l i � 0.
Negativecoef�cients maystill resultin positiveL(w) if some
Li areoverlappingdistributions,aswe discussin Section4.
Theselinearcombinationsproducenew images

I(x) =
Z

W

 
n

å
i= 1

l i � Li(w)

!

� R(x;w)dw

=
n

å
i= 1

l i �
Z

W
Li(w) � R(x;w)dw =

n

å
i= 1

l i � Ii (x):

(3)

For relighting,thelight stagetechniqueusesweightsl i that
are computedby integrating the incident radianceLnovel
over neighborhoodsof the sampleddirections [DHT� 00,
MDA02].
Weproposeanovel techniquethatusesEquation(3) �rst for
estimatingl i from animageof theprobeobjectin thenovel
illumination, andthenapplies(3) again to relight the target
objectfor thenew imageI (Figure2). More speci�cally, let
theimageSof theprobeobjectbe

S(x) =
n

å
i= 1

l i � Si(x) =
n

å
i= 1

l i �
Z

W
Li;probe(w) � Rprobe(x;w)dw

=
Z

W
Lprobe(w) � Rprobe(x;w)dw

(4)

with sampleimagesSi of the probe.Lprobe and Rprobe de-
notetheincidentlight distributionandre�ectance�eld of the
probeobject,while thevariablesI , L andR refer to the im-
ages,light distribution andre�ectance�eld of thetargetob-
ject.Wenow assumethattheincidentlight mapL andLprobe
for thetargetandprobeareequalthroughouttheprocess,or
at leastthatbothareformedby thesamelinearcombinations
of samples:

L =
n

å
i= 1

l i � Li ; Lprobe=
n

å
i= 1

l i � Li;probe: (5)

Given an imageS of the probein a novel illumination, we
canthen�nd the expansion(Equation4) that is optimal in

the leastsquaressense,minimizing the total error over all
pixels(x;y)

E(l i ;S) = k
n

å
i= 1

l i �Si � Sk2 = å
x;y

 
n

å
i= 1

l i � Si (x;y) � S(x;y)

! 2

(6)
and obtain the set of coef�cients l i requiredfor relight-
ing the target (Equation3). The minimum of E(l i ;S) can
be found by solving a simple linear systemusingstandard
methodssuchas the pseudo-inversematrix. In the follow-
ing section,we describea moreappropriatetechniquethat
employs regularization.

3. BayesianRelighting

Solving directly for the parametersl i by a pseudo-inverse
would produceover�tting artifacts,as shown in Figure 3
(whereh = 0): �rst, theimagesof theprobeobjectarenoisy,
sothesystemwouldattemptto reproducethisnoise.Second,
thesamplesdo not spanthefull spaceof possibleillumina-
tions,soaleast-squaresreconstructionof thenovel illumina-
tion would involve extremecoef�cients l i far from thecon-
vex hull of examples.This implies thatnoisein thesample
imagesof theprobewouldbescaledwith largefactorsl i of
oppositesign,causingampli�ed noisein theresult.
Therefore,wetakeamaximum-a-posterioriapproach(MAP,
see[DHS01]) to relighting: given an image Snovel of the
probeimagein a novel illumination,we �nd the imageI of
the targetobjectthatmaximizestheconditionalprobability
p(I jSnovel) (posteriorprobability), basedon an estimateof
thepriorprobabilitypof lightingconditionsfromthesample
set.Wedonotneedto know theincidentlight mapL(w) ex-
plicitly, but only in termsof a linearcombinationof sample
illuminations.Basedon the prior probability, a regulariza-
tion parametercontrolshow conservative our estimatewill
be.
To estimatethe prior, we perform a principal component
analysis(PCA) on the set of probesamplesSi , i = 1:::n:
let S= 1

n å i Si , andA bethematrix formedby thecolumns
(Si � S). PCA is basedon a diagonalizationof the covari-
ancematrix: C = 1

nAAT = U diag(s2
i ) UT, wheres i arethe

standarddeviationsof thedataalongtheorthogonalprinci-
pal componentvectorsui given by the columnsof U. This
diagonalizationis achievedby aSingularValueDecomposi-
tion [PTVF92]

A = UWVT (7)

with a diagonalmatrix W = diag(wi), s i = 1p
nwi , andan

orthogonalmatrix V. A probeimageS canbe written asa
linearcombinationof theprincipalcomponents

S= å
i

ciui + S= Uc+ S; (8)

whereci are the linear coef�cients. The estimatednormal
distributionof samplesis, with anormalizationfactornp,

p(c) = npe
� 1

2 å i
c2
i

s2
i (9)
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h = 0 h = 0:0001 h = 0:001 h = 0:01 h = 0:1 h = 0:3 h = 1 h = 100

Figure 3: Each row showsa predictedimage with close-upon the testsubject's right eye. Theparameterh is usedfor regu-
larization in therenderings.Thehighlight in theeyeandtheshadowdistribution demonstrate thetradeoff betweena detailed
lighting (low valuesof h) andlow noise(highvaluesh) in therendering. For theserenderings,n = 625input imageswereused.

within thelinearspanof examples.Sincethecoef�cients of a
linearcombinationof probeimagesSi alsodescribethecom-
binationof light mapsLi(w), p alsocapturesthe estimated
probability densityof light distributionswithin the spanof
Li . With additive Gaussianpixel noisein the probeimages
S, the likelihoodof an incidentlight mapL(w) producingS
is

p(Sjc) = nl �Õ
x;y

e
� 1

2s2
N

(å ciui;x;y+ Sx;y� Sx;y)2

= nl �e
� 1

2s2
N

kUc+ S� Sk2

;

(10)
with a standarddeviation sN anda normalizationfactornl .
Thenormk:k2 denotesthesumof squaredpixel differences.

Accordingto Bayes'theorem,theposteriorprobabilityis

p(cjS) � p(Sjc) � p(c); (11)

which is maximizedif acostfunctiongivenby thenegative,
rescaledlogarithmis minimized:

E(c;S) =



 Uc+ S� S




 2

+ hå
i

c2
i

s2
i

; (12)

whereh = s2
N is a regularizationparameterthat canbe

usedto control how conservative the estimateis supposed
to be,which dependson theanticipatedmeasurementnoise
andthepropertiesof thesampledilluminations,suchastheir
angulardistributionandangularoverlap.Themorecomplete
andsmooththe basisof samples,the smalleran h we may
choosewithout producingartifacts.Figure 3 illustratesthe
effectof differentvaluesof h in oursystem.

E is minimal if ¶E
¶ci

= 0 for all i:

¶E
¶ci

= 2hui ;å
k

ckuk + S� Si + 2h
ci

s2
i

= 0; (13)

which is achievedfor

c = diag

 
s2

i

s2
i + h

!

UT (S� S): (14)

Theconservativebest�t canberewrittenin termsof theorig-
inal basis,usingVTV = id:

SMAP = Uc+ S= AVW � 1c+ S= Ac̃+ S (15)

where c̃ = V diag

 
1

p
n

�
s i

s2
i + h

!

UT (S� S): (16)

Usingthede�nition of S, weobtain

SMAP = å
i

l iSi ; l i = c̃i +
1
n

(1� å
k

c̃k): (17)

Thesecoef�cients l i alsoprovidethemaximum-a-posteriori
predictionfor thetargetobjectimageatanovel illumination:

IMAP = å
i

l i Ii : (18)

4. Samplingand Relighting of Objects

For collecting imagesof the probe and target objectsat
different illuminations, we use an inexpensive setupwith
widely availableequipment.Probeandtargetobjectsshould
be relatively closetogetherto make surethat they areillu-
minatedin thesameway in thesenseof Equation(5). Probe
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Figure 4: Arbitrary probeobject(left, 128� 128 pixels),sparsesampling:an arbitrary part of the scenecan be usedas a
probeobject in the caseof a �xed camera setup.The top row showsthe reconstructionfor sparsesampling(n = 250), the
bottomrow groundtruth. While the sparsenesscausesblurred highlightsand shadows,the reconstructiondoesnot produce
multipleblendedshadowboundariesor comparableartifactsaspoint-basedlighting sometimesdoes.

andtargetcanbecapturedeitherin thesamepicture,aswe
did, or in separatepicturestakenwith two cameras.Weused
anOlympusC5050Zdigital camerafor still imagesata res-
olution of 2576� 1925pixels,anImperxMDC 1004video
cameraat 1004� 1004pixelsfor thedatasetshown in Fig-
ure3, andanHDRC VGAx high dynamicrange640� 480
video camera,courtesyof IMS-CHIPSy, for the facedata
setshown in the video. For all cameras,imageswerecap-
tured in raw format, and a linearizationand Bayer recon-
structionwereperformed.The renderingsin this paperare
subjectto an sRGBnon-lineartransform,approximatinga
gammavalueof 2:2.
Theilluminationin ourmeasurementwasindirectlight from
the white walls and ceiling of a seminarroom in our lab
(Figure5). Walking aroundthe room,we illuminate differ-
ent partsof the room with a hand-heldHMI light source
(Joker-Bug 800 by K5600).The methodshouldwork with
any bright light source,andasthe illumination maychange
duringexposure,longexposuresdonotdeterioratethemea-
surementsfor staticobjects.Weavoid tohit theobjectsor the
cameradirectly by usinga re�ector andpointing the light
away from the measurementsetup.In the seminarroom,
ceiling andwalls werefar enoughto approximatelysatisfy
theassumptionof distantlight.
While our approachdoesnot requirecalibratedillumination
with a known distribution L(w), and neitherambientlight
nor smallerobjectsor darker regionsin the roomaffect the
measurements,therearetwo issuesto take careof: �rst, the
incident light shouldcover as much of the spherearound
the objectsaspossibleacrossdifferentmeasurements.Re-
gions that were left out cannotbe incident light directions

y http: //www.ims- chips.de/

Figure5: Measurementsetupfor thestill camera: anOlym-
pusC5050Zdigital camera recordsobjectsona tablewhich
areindirectlylit byahand-heldspotlightpointedat thewhite
walls, ceiling and �oor. Theprobeobject,a black snooker
ball, is mountedon thesmalltripod next to thetable.

in relighting. Second,the illumination patches,which es-
sentiallyde�ne thebasisLi(w) of light distributions,should
be overlappingand smooth:if the sceneis illuminated by
point lights or by small patchesof indirect light from the
walls,novel probeimageswith specularre�ectionsbetween
thosethat weremeasuredcannotbe reconstructed,andthe
new light directionswill bemissedaltogether. Therefore,we
startedoff by illuminating largeportionsof theroomfrom a
largerdistancein overlappingpatches,andthenlit overlap-
pingsequencesof smallerandsmallerpatches.
Theprobeobjectcanbeany objectthat is sensitive to illu-

minationchanges,asFigure4 demonstrates.For mostmea-
surements,wechoseto useasphere,sincethepoint-by-point
mappingbetweensampledimagesandimagesof theobject
at novel illumination canbe establishedeasilydueto sym-
metry, without �xing theobjectto thecamera.For thismap-
ping,which is neededto �nd thelinearcombinationof sam-
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daylight,LDR capture arti�cial light, HDR capture

Figure 6: Reconstructionof two light situations(top row)
and ground truth images (bottomrow) of a scenein simi-
lar arrangement.The left situation is captured in low dy-
namicrangein daylight,theright situationis takenasmulti-
exposure image in arti�cial illumination. While the pre-
dictedimagesapproximatethelighting conditiononlywith a
sparseset(n = 272) of input images,they match theoverall
brightnessanddistributionof highlightsandshadows.

ples that reproducesthe novel probeimagebest,we select
the sphereby a boundingbox in the images,and apply a
scaleandtranslationoperation,assumingorthographicpro-
jection of the sphere.We achieve good resultsscalingthe
sphereto 64� 64 pixels,andmaskingthenon-sphereparts
of theimages.
In capturingincidentlight distributions,the dynamicrange
of thecamerais animportantissue.Mostauthorsrecordim-
agesof a metallicspherewith high-dynamicrangeimaging
to avoid saturated– and thereforeunderestimated– high-
lights on thesphere.In orderto reducetheradianceat high-
lights, we prefer to use a black snooker ball, which re-
�ects only a small portion of the incidentlight to the cam-
era[TSE� 04]: accordingto theFresnelformulas,thespecu-
lar re�ectanceof thenon-metallicsnooker ball is 1:0 at tan-
gentdirections,andfallsoff rapidly to avalueof 0:04 in the
center(at anindex of refractionof n = 1:5). As a result,our
probeobjectproducesrelatively dim specularre�ectionsthat
arelikely to be within the dynamicrangeof a digital cam-
erain imagesthat,at thesametime,capturethetargetscene
appropriately.

Ourentirerelightingprocesstakesthefollowing steps:

TrainingStep:Recordasetof n imagesatdifferentillumi-
nationwith �x edcamerasandstaticobjects,de�ne abound-
ing box aroundtheprobespherein the�rst image,cropand
scalethe probein all images,performa PCA on the probe
imagesandstoretheresult.
PredictionStep:Givena photographof theprobein a novel
illumination,wecropandscaletheprobeagain from theim-
age,computec, c̃ andl i (Equations14,15,17) andform the
weightedsumof sampledimagesIi (Equation17).

The variation in overall brightnessin our samplesets
turnedout to be suf�cient to cover the variationsin novel
illuminationswithout rescaling.
Unlikemostpreviousmethods,our linearcombinationsmay
involve negative coef�cients l i : in the classicallight stage
approach[DHT� 00] and most subsequentmethods,linear

Figure 7: Resultsof relighting a test subjectfrom n = 75
still images.Someartifactsarisebecauseof movement(see
edges),but lighting remainsrealistic.

coef�cients arepositive,sincethey areweightsproportional
to the incident radiancein the neighborhoodsof discrete
light directions.Matusiket al. [MLP04] enforceconstraints
on themodelcoef�cients.
In our setting,negative coef�cients arisefrom the overlap-
ping basefunctions.Still, they do not imply physically in-
valid results:consideranimagewith two lightsA andB, and
onewith A only. Thedifferenceimagereproducesthesitua-
tion with B only, andall resultingpixel valuesrepresentvalid
positive radiances.However, negative color valuesmaystill
occurin our least-squaresframework within therangeof ap-
proximationerrors.In a seconditeration,we alleviate this
problemby �tting againstanimageconsistingof theinverse
of negative resultpixels on the probe(with a smallervalue
for h), andaddingthe resultingcoef�cients to theprevious
results.

5. Results

Figure1, 2 and8 show imagesof objectsthatwererelighted
with our system,demonstratingthe high spatialdetail that
canbeachievedwith still camerameasurements.
The training step for theseimagescontained272 sample
images,taken in about30 minutes.The computationtime
for the PCA on the probepicturestook about20 seconds
per color channelon a PC with 3 GHz Intel Xeon Proces-
sor. Determiningthe coef�cients l i for sometarget image
Starget takes lessthan2 seconds,andreconstructingan im-
agetakes between1 (for 64� 64 images)and16 seconds
(for 708� 560 pixels). Thesenumbersare for the dataset
from Figure 2, but arecomparableto the others.The tim-
ings areperformedafter transferringthe picturesfrom the
camera'sCompactFlashCard,andreconstructingtheBayer
patternin eachof theinput images.
Figure 8 shows the wide range of material appearances
which are capturedby our approach:cloth (napkin), pol-
ishedmetal (cutlery), glossyobjects(orange,plate), trans-
parentobjects(wine insideglass)andevennear-�eld caus-
tics (jelly). All of theseareplausiblyrelighted.For aground
truth comparison,we reproducedlighting of two scenes,as
shown in Figure6.
For live objects,suchashumanfaces,theacquisitiontime

is an issue.Figure 7 demonstratesthat from n = 75 sam-
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a

b

a

b

Figure 8: Variousmaterialsrelighted,n = 272. Therowsa showreproducednatural lighting (asin Figure 1, secondcolumn),
the rowsb showsyntheticlighting of a directionaldominantlight source in an otherwisetotally dark room.Theobjectsare
fromfour differentdataacquisitions:(i) dish,napkinandwine, (ii) jelly, (iii) spoon,sheepandjuice, (iv) oranges.

ple illuminations,which werecapturedin about8 minutes,
interestingeffects of humanskin structurecan alreadybe
captured.However, especiallyfor theperceptuallyimportant
visualpropertiesof humaneyes,a setupwheretheeyesare
openis moreappropriate;therefore,we alsoperformedex-
perimentswith two fastercameras.In oneexperiment,the
testsubject(Figure3) wasrecordedfor 25 secondswith a
videocamera,yielding 625 input imageswhich allow us to
recreateevenspecularhighlightsin theeyes.In anotherex-
periment(seesupplementalvideoof a smiling personhold-
ing a toy animal),we usedan HDR video camerayielding
1000framesin acomparabletime.
Even thoughthecamerasgave usabundantimagedatain a
shortperiodof time,wehadto recordfor about25secondsto
sweepthelight source'sconeover thewall manually, cover-
ing a suf�cient setof light conditions.Residualmovements
of the testsubjectwho was recordedwith the still camera
(Figure 7), which becomevisible as relief-like artifactsin
thesupplementaryvideo,arelessprominentin thevideoac-
quisitionsetup(Figure3) dueto shorterrecordingintervals.
In the backgroundof the syntheticimages,behindthe tar-
getobjects,ourtechniquetendsto produceghostimagesthat
show theexperimenterandthespotlight,astheexperimenter
becomespartof thedistantincominglight environment.We
maskedthebackgroundin thevideo,andcroppedtheimages
to theobjectregion in theFigures.

Althoughit is designedfor relightingwith naturalillumina-
tions,ourapproachcanalsobeusedfor syntheticrelighting,
basedonrenderingsof asnookerball. For Figures8 (row b),
3, andthe rotatinglight sourcein the video,we rendereda
spherewith PhongBRDFandanadditionalFresneltermfor
a refractive index nrefract = 1:5. The Phongexponentgives
us an easycontrol of the distribution of incominglight; by
choosinga low exponent,anextendedlight sourceis simu-
lated.Syntheticimagesof theball createdwith a ray-tracer
or globalillumination techniquescouldbeusedaswell.
For illumination design,as shown in Figure 1 (right), the
userdraws patternsof incoming light with standardimag-
ing software into an imageof the probeobject, which is
thenreconstructedby our Bayesianmethodfor transferring
the lighting on the target. This is unlike previous methods
[ADW04a, ADW04b], wherethe lighting was designedin
thetargetimagedirectly. For practicalapplications,bothap-
proachesareuseful,but they addressdifferentdesignpur-
poses.

6. Conclusion

The contributionsof our methodarea new theoreticalap-
proachfor relighting,anda low-costsystemthatrequiresno
light stageor othersophisticatedsetupor equipment.From
a maximum-a-posterioriapproach,we have derived a sim-
ple mathematicalformulawhich makestherelightingalgo-
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(i) (ii) (iii) (iv)

Figure 9: Comparisonto impulse-responsesampling: in
order to reconstructa target (i), samplingn = 271 non-
uniformlydistributedpoints(ii) insidethetarget image'sac-
tive area createsholesand non-smoothartifacts (iii), even
thoughwe sampledlight directionsfavorably. In contrast,
our methodwith extendedincominglight sources(iv) gives
a continuousreconstruction.

rithm easyto implement.We hopethatour techniquehelps
to make relightingmoreavailableto abroadrangeof users.
In contrastto previous work, our methoddoesnot apply
point-light illuminationsfor sampling[DHT� 00, HWT� 04,
MDA02], but low spatialfrequency illuminations.Bothcon-
ceptswork well for diffuseobjectsin arbitrarylighting, but
involvedifferenttradeoffs for specularobjectsandcastshad-
ows,givenalimited setof sampleilluminations.Ourmethod
tendsto blur highlightsandshadow edges,ascanbe seen
in Figure 4, but reconstructsextendedlight sourceswell.
Impulse-responsemethodsreproduceextendedsourcesby
individual points, as illustrated in Figure 9. Also, in ani-
mationswith moving directionallight sources,sharpspec-
ular highlightsfadein andout, while our methodproduces
smoothlymoving, but slightly broaderhighlights(asseenin
theeyesin thesupplementalvideo).
As a conceptualadvantage,our implicit approachlearnsthe
mappingbetweenprobeandoutput imagesdirectly, rather
than investingin the estimateof intermediateinformation,
suchasincidentlight [Deb98] or re�ectance[MLP04]. We
have proposeda new, moregeneralnotion of a light probe
object,whichmakesthemethodinterestingfor new applica-
tions in �x edcamerasetups.We presenteda resultemploy-
ing toy �gures for thatpurpose.
Our method �ts seamlessly into existing acquisition
pipelinesthatmeasureincidentlight distributionsexplicitly,
asthemappingof thelight distribution to thesnookerball is
straight-forward.However, thisisnotourprimarygoal,since
we proposea differentmeasurementprocessfor determin-
ing illumination that is equallysimpleas the conventional
methodof capturinga mirror sphere.It is easyto improve
the speedof the illumination samplingby technicalmeans,
asthemeasurementsetupis uncalibrated.
Fromagivensetof sampledilluminationconditions,oursta-
tistical approachenablesus to predicta relightedimagein
anoptimalsensewithoutexplicit knowledgeof theobjector
lighting properties,makingit a consequentimplementation
of learning-basedcomputergraphics.
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