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Abstract— What are the attributes and features of faces that
allow humans or machines to make most reliable inferences
from visible to occluded regions of the face, or from shape to
texture and vice versa? While both the Human Visual System
and many example-based algorithms rely on correlations, these
are implicit and difficult to visualize. This paper identifies
and visualizes the most reliable correlations using a canonical
correlation analysis (CCA) of faces in a 3D Morphable model.
We investigate correlations between shape and texture, but also
between shape of mouth and shape of eyes / lower and upper
facial shape / overall shape and eye or mouth, and we separate
intrinsic correlations from random correlations in the training
set. By projecting the CCA axes on semantic attributes such as
“large eyes” or “wide lips”, they can be partly translated into
verbal descriptions.

Using an algorithm that fills in missing information in
faces, such as occluded regions, based on PCA or CCA, and
a subsequent assessment of perceived similarity, we evaluate
the benefit of CCA over PCA. There is no evidence of CCA
being superior, which means that PCA captures correlation
sufficiently and is not affected by spurious random correlations
in the limited training set.

I. INTRODUCTION

When we look at a human face in a front view image,
most of us feel confident to guess what the face would look
like in a side view, and sometimes we may be surprised
if individuals have an unexpected profile when they turn
their heads. The same is true for our ability to “fill in“
missing regions in images of faces: if we see a person with
sunglasses, we may guess what they look like when they
take off the glasses, or if we see only the eyes of a someone
wearing a motorbike helmet, we form a mental image of
their head shape.

In computer vision, similar tasks have been addressed
with methods such as Hallucinating Faces [1]: Statistical
representations of the visual appearance of faces can be used
to fill in missing areas in images or missing detail in low
quality images. For a recent survey, see [2]. The problem if
inferring depth from front view images has been investigated
in computer vision and graphics by [3], and a comparison
between computational methods and human expectation has
been presented in [16].

Computational methods rely mostly on first order cor-
relations between coordinates and colors of facial feature
points in datasets of face images or scans. [16] have shown
that this approach is consistent with the behavior of human
participants. However, it remains unclear what exactly these
correlations are, and how strong and reliable they are.

In this paper, we strive to isolate the most relevant
correlations of global or local attributes of faces from a
dataset of 3D scans in a 3D Morphable Model (3DMM, [3]).
Principal Component Analysis (PCA) is a standard technique
to exploit correlations in data. However, visualized principal

components may mislead us into false conclusions on what
exactly is correlated in faces, and what isn’t: Consider a set
of 2D vectors (x, y)T in a symmetrical normal distribution.
The principal component with highest variation may be any
2D vector, for example the vector (1, 1)T , and from this
we may conclude that x and y are correlated, which in
fact they aren’t. Only by looking at the second component
(which would be an orthogonal vector (1,−1)T ) we would
see that this is not true. For high-dimensional data, it is
difficult to distinguish true correlations from false ones just
by looking at the principal components: The first component
makes faces smaller and more round, but do we know if other
components, combined, account for the opposite effect?

While it is easy to calculate the correlation between
attributes of faces in a data set, our task is more difficult:
Find the pair of attributes in two modalities (shape versus
texture, front versus side view, upper versus lower half of the
face, eyes versus mouth) that have highest correlations. The
background of this question is: if we are to make inferences
from one to the other, what are the attributes we should rely
on? And what are the rules that humans may have learned
and that they apply when they imagine new views that they
haven’t seen?

In this paper, we adapt canonical correlation analysis
(CCA) to explore and visualize correlations between different
part of a face or between different modalities. The CCA
was introduced by Hotelling [11] and is a common statis-
tical method that estimates linear correlations between two
multidimensional variables. In the last decades it has been
widely used in several scientific fields such as economics [9],
medical studies [4] and even in classification of malt whiskys
[14]. But also in computer vision and pattern recognition,
CCA was used for solving different tasks. [8] applied CCA
for learning filters for multidimensional signal processing,
and [13], for example, used CCA to locate pixels in video
frames that are correlated with sound of the recorded scene.
Since CCA only handles linear correlations, [15] introduced
a Kernel CCA that estimates non-linear correlations, and
[19] used this kernel based method to recognize facial
expressions.

In psychology, an interactive activation model, developed
by Burton et al [5] and [6], allows a computational descrip-
tion and simulation of the human cognitive systems in terms
of various face recognition tasks.

A. 3D Morphable Model

The 3D Morphable Model of 3D faces (3DMM, [3]) is
a statistical model that captures the range of natural faces
in terms of 3D shapes and textures. It is derived from a
dataset of 200 3D scans of faces, including 100 female and
100 male faces. 199 faces are caucasian, one female face is



asian. The crucial step is to establish dense point-to-point
correspondence of all faces with a reference face. Then,
shapes and textures of all m individual faces i ∈ {1, ...,m}
in the database are represented by shape and texture vectors
[3]

Si = (x1, y1, z1, x2, . . . , xn, yn, zn)
T (1)

Ti = (r1, g1, b1, r2, . . . , rn, gn, bn)
T (2)

formed by concatenating coordinates and colors of all n
vertices of the reference model. So a given point such as the
tip of the nose will be represented by the same vertex for all
individual faces. In our model m = 200 and n = 75, 972.
Furthermore, arithmetic means are calculated to have zero-
mean shape and zero-mean texture vectors: Si = s+ si and
Ti = t+ ti with the arithmetic mean s and t and the zero-
mean shape vector si and texture vector ti.

In this face-space representation, linear combinations of
shape and texture vectors generate morphs of the database
faces, and will therefore have plausible and natural face-like
appearance:

S = s+

m∑
i=1

αisi (3)

T = t+

m∑
i=1

βiti (4)

B. Attribute Vector
The attribute vector [7] is an easy to handle method for

manipulating the appearance of faces in one specific/ defined
direction. Thus, it is possible to change only one facial
characteristic, such as the overall shape of a face, and retain
all other characteristics, such as the shape of the mouth or
the eyes, entirely.

Since attribute vectors are defined in the same face space
representation as the shape and texture vectors, both number
of vertices and (more important) the dense point-to-point
correspondence of all vertices is maintained for each attribute
vector. Due to this property, an addition or subtraction of
attribute vectors to shape or texture vectors are possible.
Hence the manipulation process is implemented by adding
or subtracting multiples of an attribute vector to a shape or
texture vector:

schanged = si + d · as,k. (5)

Here si is a shape vector and as,k is an attribute vector
for shape describing one specific attribute k. d expresses
how strong the characteristic should change. An example
of how the attribute vector manipulates the appearance of a
face is shown in Figure 1 For this instance, let as,cheek be an
attribute vector for shape, describing whether the shape of the
cheeks are skinny or puffy. Adding or subtracting multiples
of as,cheek to any shape vector alters the facial shape
regarding this attribute, but keeps all other characteristics
such as the shape of the mouth or the eyes unchanged (see
first row in Figure 1). The second row in Figure 1 shows
how the overall shape of an input face can be altered by
utilizing an attribute vector. Although this example shows
only changes concerning the 3D facial shape, the attribute
vector is also applicable to facial texture. For the generation
of such attribute vectors, two processing steps are necessary.

−3 · as,cheek −1 · as,cheek Average +1 · as,cheek +3 · as,cheek

−3 ·as,overall original +3 ·as,overall

Fig. 1: Example of two different attribute vectors: The first
row shows the manipulated average face by adding or sub-
tracting the attribute vector as,cheek that describes the shape
of the cheeks. Subtracting multiples of this vector results in
skinny cheeks whereas adding multiples of the vector result
in puffy cheeks. The second row shows the manipulation of
an input face with the attribute vector as,overall that describes
the overall facial shape. In this example adding the attribute
vector alters the facial shape to a round facial shape and
subtracting to a rectangular facial shape. Note that all other
facial characteristics are not changed by the attribute vector.

First, let si be a set of shape sample vectors, and bi ∈ R be
the ratings of a given attribute for these 3D faces. The ratings
bi can be either given as ground truth (this could be the age
or any other measurable attribute such as the nose length or
the width of the mouth) or a subjective rating selected by the
user [7]. In a second step, the attribute vector as is computed
by solving an optimization problem, that can be converted
to a simple weighted sum:

as =
1

m
Sb =

1

m

m∑
i=1

bisi (6)

with the data matrix S = (s1 . . . sm) and b = (b1 · · · bn).
To calculate an attribute vector at for texture, the same can
be done with a texture data matrix T = (t1 · · · tn). For
this paper, the set of shape and texture vectors is the whole
database of 200 3D laser scans from the 3DMM (see Section
I-A).

II. CORRELATION ESTIMATION

A. Attribute Mapping Function

The main goal of this paper is the exploration of cor-
relation in facial data. More precisely we want to figure
out if statistical relations between different facial parts (e.g.
between eyes and mouth, upper and lower part of the face)
or between different modalities (e.g. between RGB color
information and 3D shape) exist. So is it possible to draw
conclusions from the shape of the mouth to the shape of
the eye or from facial color to shape of facial parts or the
general shape and vice versa. We want to explore if worded
statements like “male people with small eyes have probably
an overall rectangular facial shape” or “people with fair skin
will probably have narrower lips than people with darker
skin” can be formulated automatically from a statistical
analysis.



To solve this task, a description method to measure global
facial features such as overall shape and even more any
partial characteristics of faces like the specific shape of
nose, eyes or cheeks, is necessary first. Furthermore, this
measurement should map the strength of each characteristic
to a single value, to have a descriptive tool for comparison
different input faces concerning the intensityof the related
characteristic. The following notation refers to shape first,
but applies to texture in the same way. For this, let f(si) = li
be an attribute mapping function that maps the shape vector
si ∈ Rn of an input face i to a single value li ∈ R that
rates the facial shape regarding a defined facial characteristic.
The attribute mapping function f(s) should be applicable to
simple characteristics such the width of the nose (which can
be measured by a trivial distance calculation between two
vertices) as well as to more complex characteristics such as
the specific shape of facial parts like the cheeks or the eyes
(which requires more complex calculations for mapping to
a single value). Due to the small number of input heads
(m = 200), we restrict the mapping to a linear function
f that can be implemented as a scalar product. Therefore,
the attribute vector concept described in Section I-B is used,
since it handles the demanded constraints entirely. In this
paper we use the attribute vector as,k for rating the strength
of a facial characteristic by projecting a shape vector si onto
as,k. This projection is the scalar product of as,k and si. So
the attribute mapping function f(si) for a specific attribute
vector can be written as

f(si,as,k) =< si,as,k >= li. (7)

The value li expresses the strength of the characteristic
defined by as,k for an input face represented by a shape
vector si. For example, let the addition of multiples of as,k to
a shape vector modifies the overall shape towards an angular
shape and the subtraction towards a round facial shape. Then
values of li greater than zero denotes an angular face and
values less than zero a round overall shape. Moreover, the
scale is continuous, so it is possible to rate and compare
different strength of angularity or roundness.

By concatenating m shape vectors to a matrix, it is
possible to rate several input faces (simultaneously) for one
facial attribute:

f(S,as,k) = STas,k = ls,k (8)

with

S = (s1 . . . sm) and ls,k = (l1,k . . . lm,k)
T (9)

Here, S is a shape matrix with m shape vectors as column
vectors. The label vector ls,k represents the strength of the
shape characteristic k for each of the m shape vectors in S.

If two different attribute vectors as,1 and as,2 are projected
onto the same shape matrix S, the relation of elements in ls,1
and ls,2 is consistent in the following sense: the first entry
in both label vectors is related to the first input shape vector,
the second entry in both label vectors to the second input
shape vector and so on. This property is crucial for further
calculation of facial correlation in Section II-B.

B. Exploring facial Correlation between Shape and Texture

In this section we focus on facial shape and RGB informa-
tion to illustrate the method for exploring facial correlations
between these two modalities. We utilize the attribute map-
ping function and the corresponding label vector. But unlike
the previous sections, where a predefined attribute vector is
used, we go the other way around by estimating an unknown
attribute vector, that describes the correlations between shape
and texture.

Let S = (s1, . . . , sm) be a shape matrix with m =
200 zero-mean shape vectors (as columns) and let T =
(t1, . . . , tm) be a texture matrix with the corresponding
zero-mean texture vectors. Then f(S,as,1) calculates the
label vector ls,1 that rates every input shape (vector si)
regarding an unknown facial shape characteristic described
by attribute vector as,1, and f(T,at,1) calculates the label
vector lt,1 that rates every input texture (vector ti) regarding
an unknown texture characteristic represented by attribute
vector at,1. The index 1 for both attribute vectors and the
label vector denotes that those vectors describe the direction
with the largest correlation. Since the position of shape and
texture vectors are consistent in T and S (shape vector si
and texture vector ti of face i are at the same position in
S respectively T ), the relation of all entries in both label
vectors are also consistent.
ls,1,1 ↔ lt,1,1
ls,1,2 ↔ lt,1,2

...
...

ls,1,m ↔ lt,1,m

 =


f(s1,as,1) ↔ f(t1,at,1)
f(s2,as,1) ↔ f(t2,at,1)

...
...

f(sm,as,1) ↔ f(tm,at,1)


Now the goal is finding those two attribute vectors as,1 and
at,1 that minimizes the angle θ between the corresponding
label vectors ls,1 and lt,1 (in an optimal solution the differ-
ence between ls,1 and lt,1 would be zero). This leads to a
maximization of

< STas,1, T
Tat,1 >

‖STas,1‖‖TTat,1‖
. (10)

With zero-mean shape and texture vectors (see Section I-A)
it is similar to maximizing the Pearson correlation coefficient
and Equation (10) can be written as

r1 = corr(STas,1, T
Tat,1), (11)

where r1 is the correlation coefficient and as,1 and at,1 are
the attribute vectors with the largest correlation.

This maximization problem can be solved by using the
canonical correlation analysis.

C. Canonical Correlation Analysis (CCA)

The problem formulation of CCA is similar to Equation
(10) when S and T are considered as two random variables,
and ls = STas, lt = TTat as a linear combination of basis
vectors as and at[8]. Then Equation (10) to be maximized
can be written as

r =
E[as,1

TSTTat,1]√
E[as,1TSSTas,1]E[at,1TTTTat,1]

=
as,1

TCstat,1√
as,1TCssas,1at,1Cttat,1

(12)



where Css and Ctt are the covariance matrices of as and
at, and Cst = CTts are the cross-covariance matrices, respec-
tively. Canonical correlation analysis finds two sets of basis
vectors, such that the correlation between the projections of
the random variables onto these basis vectors are maximized
[8]. With the total covariance matrix

C =

(
Css Cst
Cts Ctt

)
(13)

the canonical correlations between S and T are calculated
by solving the eigenvalue equations{

C−1
ss CstC

−1
tt Ctsas = r2as

C−1
tt CtsC

−1
ss Cstat = r2at.

(14)

r2 are the squared correlation coefficients, and as and at
are the normalized attribute vectors (the normalized CCA
basis vectors). The number of non-zero solutions is limited
to the smallest dimensionality of S and T . The solutions
are sorted in descending order concerning the correlation
coefficient. Thus, the attribute vectors as,1 and at,1 of
the first solution describe the correlation with the largest
correlation coefficient r1, the attribute vectors as,2 and at,2
of the second solution describe the correlation of the second
largest correlation, and so on. The solutions of the eigenvalue
problems are related, so only one equation has to be solved{

Cstat = rλsCssas

Ctsat = rλtCttat
(15)

with
λs = λ−1

t =

√
atTCttat
asTCssas

(16)

Due to the high dimensionality of the attribute vectors
(3 · n· with n = 75, 972) in relation to the number of input
heads (m = 200), the small sample size (SSS) problem
occurs [10], [17]. In this case, the CCA is unfeasible, since
it always finds a solution that results in maximum correlation
with a correlation coefficient of rk = 1.

By using a principal component analysis (PCA) the SSS
problem can be avoided [17]. For this, the distribution of
database faces (see Section I-A) can be described in terms
of arithmetic means, unit-length eigenvectors and standard
deviations for shape and texture. With this, we can rewrite
Equation (3) and (4) in a new basis (see [3]):

S = s+

m−1∑
i=1

αius,i, (17)

T = t+

m−1∑
i=1

βiut,i. (18)

As the attribute vectors are defined in the same face space
representation as the shape and texture vectors, they can
also be represented by a linear combination of the principal
components us,i and ut,i:

as,k =

m−1∑
i=1

αk,ius,i = Usαk, (19)

at,k =

m−1∑
i=1

βk,iut,i = Utβk, (20)

with Us = (us,1 . . .us,m−1). and Ut = (ut,1 . . .ut,m−1)
Equation (11) can be written as

r1 = corr(STUsα1, T
TUtβ1) (21)

= corr(Sαα1, Tββ1) (22)

with the data matrices Sα = STUs and Tβ = TTUt. Now
the attribute vector as,k for shape is represented by the
coefficient vector αk and the attribute vector at,k for texture
by the coefficient vector βk. This reduces the complexity for
the CCA calculation as well, since the coefficient vectors,
with a maximum size of m − 1 = 199, are much smaller
than the original attribute vectors. However, the size of the
coefficients vectors are de facto much smaller than 199.
The optimal number of components is evaluated in the next
section.

D. Correlation Validation
As pointed out in Section II-C, the dimensionality reduc-

tion due to principal component analysis avoids the small
sample size problem and makes it possible to solve the
canonical correlation analysis problem numerically. In the
following, we demonstrate that the number of principal com-
ponents has to be reduced further since using all m = 199
principal components would lead to correlation coefficients
equal to 1 for all solutions even on random data.

In our evaluation, the correlations between facial shape
and texture were calculated by CCA with different numbers
of PCA dimensions. We started the estimation with 5 PCA
components and increased the number in steps of 5. The
largest correlation coefficient r1 for each number of compo-
nents is plotted with the blue line in Figure 2.

This graph shows that using more than 80 principal
components leads to correlation coefficients close to 1.
However, we cannot be sure that the estimated attribute
vectors describe real and informative correlations, as opposed
to random ones. In large datasets, it will always be possible
to find solutions with a large correlation coefficient, even
if these correlations describe random effects. To eliminate
this, we permuted the order of the data vectors in one of the
input data matrices. In our case, the order of shape vectors
si in the shape matrix S were altered and the order of the
texture vectors ti in the texture matrix T are left unchanged.
Note that it is not the order of vertices in the shape and
texture vectors, but the assignment of vectors to individual
faces that we altered, so the shape vector si of sample
face i is no longer mapped to the correct texture vector ti
anymore. Afterwards the correlations between the modified
shape and the unchanged texture matrices are recalculated
with CCA. Again, we implemented the estimation with
different numbers of PCA dimensions. The result is shown
in the red line of Figure 2.

The result shows that the correlation coefficient of the
permuted data is lower than the coefficient of the unchanged
data (see blue line in Figure 2). It also shows that in higher
dimensions (higher number of PC components used), the two
curves converge: If more than 85 components are used, the
correlation coefficient r1 of the largest correlation becomes
1, even for trivial random datasets.
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Fig. 2: Influence of spurious, random correlations in the
dataset: The blue curve shows the largest correlation coef-
ficient r1, depending on the dimensionality of input vectors
(number of principal components) between shape and tex-
ture, based on the fact that for each individual face i we have
a shape and a texture vector. By a permutation of the order
of ti, we destroy the mapping between individual shapes and
textures. The red curve shows that for high-dimensional data
vectors, CCA still finds (meaningless) correlations.

From these findings, we draw the following conclusion:
The estimated facial correlations are non-random correlations
if the proper number of coefficients is chosen, since the
difference between the two curves is substantial in the range
of 15 to 40 components. If not stated otherwise, we use 35
number of principal components in this paper as tradeoff
between the magnitude of the correlation coefficient (blue
line in Figure 2) and distance to the random correlation
coefficient (red line). Note that an analytical criterion for
the statistical significance of correlations, along the lines of
a t-Test, would be difficult in this case for two reasons: first,
we have very high dimensional data and a relatively low
sample size (200 faces), and second, it is inherently difficult
to separate signal from noise in this type of data. We are
not referring to spatial noise on the surface of the face, but
the randomness of facial features in the ensemble of human
faces. Even if it was feasible to apply methods that attempt
to separate “true” from “random” sources of variations to
our problem, such as Probabilistic PCA [18], these methods
would make strong assumptions. In contrast, our Monte-
Carlo analysis with random permutations provides a valid
and reliable test of the importance of correlations in paired
data vectors.

III. VISUALIZATION OF CORRELATIONS

The combination of the 3D Morphable model of faces
(see Section I-A) and the CCA (Section II) makes it easy
to explore the correlations in faces. As described in Section
II-C, CCA calculates pairs of basis vectors, such that the
correlation between the projections of the input data onto
these basis vectors are maximized (see Equation 14). Since
the number of non-zero solutions is limited to the dimen-
sionality of the input data Sα and Tβ , and we are using
35 principal components (Section II-D), CCA calculates 35
pairs of basis vectors αk and βk with k ∈ 1, ..., 35. These
basis vectors are the PCA coefficient vectors for shape and
texture and can be interpreted as attribute vectors by using
Equation (19) for shape and Equation (20) for texture.

Sorted in a descending order with respect to the correlation
coefficients, the first pair of attribute vectors as,1 and at,1
visualizes the largest correlation between shape and texture,
and the second pair as,2 and at,2 with r2 < r1 the second
largest correlation. Due to this representation, we can use the
attribute vector concept for visual inspection of correlations
by adding multiples of these vectors to any face (as described
in Section I-B). It is important to keep in mind that the
pairs of attribute vectors as,k and at,k are related, so we
show them as a pairwise manipulation side by side in Figure
3. Note, that the attribute vectors of one modality ( as,k,
k = 1, 2, ...) are not pairwise orthogonal, since CCA enforces
a more indirect criterion of independence of components.
Figure 3 shows the first three pairs of attribute vectors with
the largest correlation coefficient in three rows. The vectors
as,k with k ∈ 1, 2, 3 are added (a) or subtracted (c) to the
average face shape while texture remains unchanged, and in
separate images (b, d), the related attribute vectors for texture
(at,k with k ∈ 1, 2, 3) are added (b) to or subtracted (d) from
the average face texture (here, the shape is not modified).
Note that the relative sign of as,k and at,k is important
here, unlike the signs of principal components in standard
PCA, so (a) and (b) form a pair of attributes, and (c) and
(d) are the opposite pair. We used 35 principal components
for the correlation estimation and the value of the 3 largest
correlation coefficients are: r1 = 0.9487, r2 = 0.9322 and
r3 = 0.9202. In the calculations, we consider only vertices
of the inner part of the face, and ignore areas such as the
neck, the forehead and the ears. In the following figures,
these areas are rendered with the average facial shape and
texture.

Figure 3 indicates that in terms of facial shape, the shape
of the nose, the eyebrows and the eyes and the thickness
of the lips are correlated with the color or brightness of the
eyelashes and the lips, and a beard shadow. More precisely,
subtracting as,2 makes the shape of the nose smaller and
finer, as well as the the eyebrows thinner and more curved.
Also the eyes are more circular and the lips thicker. Regard-
ing the related attribute vector for texture as,2, subtraction
reduces the beard shadow, darkens the color of the eyelashes
and makes the color of the eyebrows more continuous. Also
the color of the lips is more pale, which is perhaps one of
the more unexpected correlations that we found. Some of
the correlations can be explained by the typical differences
between male and female faces that were found previously
in analyses of the differences of male and female 3D scans
[3].

With the method described in this paper, correlations
between any modality or sub-region of human face scans can
be investigated in the same way as we described for shape
and texture. For example, we calculated the correlations
between the shape of facial front and side information: In
this case, the input matrix for the frontal information is
formed only by the x (left-right) and y (vertical) coordinates
of the shape vectors si (see Section I-A), and the second
input matrix for the side information only with the z (depth)
coordinates. All other subsequent calculations are the same
as the estimation of shape and texture correlation.



(a) Adding as,1 (b) Adding at,1 (c) Subtracting as,1 (d) Subtracting at,1

(e) Adding as,2 (f) Adding at,2 (g) Subtracting as,2 (h) Subtracting at,2

(i) Adding as,3 (j) Adding at,3 (k) Subtracting as,3 (l) Subtracting at,3

Fig. 3: Visualization of correlations between facial shape and texture information: Due to addition and subtraction of the
calculated attribute vectors for shape as,k and for texture at,k to a face, it is possible to visualize the estimated correlation.
Here, the 3 pairs of attribute vectors with the largest correlation coefficient are used, to illustrate this mechanism by applying
this on the average facial shape and texture. (3a) and (3c) shows this for the first attribute vector for shape as,1, and (3b)
respectively (3d) the related attribute vector for texture at,1. (3e), (3g), (3f), (3h) illustrates the second largest correlation
and (3i), (3k), (3j), (3l) the third largest correlation.

(a) + afront,1 (b) + aside,1 (c) - afront,1 (d) - aside,1

Fig. 4: Visualization of correlations between frontal and side
information: The first and the third example shows the addi-
tion or subtraction of the attribute vector afront,1 with frontal
information (x (left-right) and y (vertical) coordinates) and
the second and fourth example shows the attribute vector
aside,1 with side information (z (depth) coordinates). All
examples are rendered with average texture.

Figure 4 shows another example of facial correlations we
have evaluated. It visualizes the correlation between facial
front (x and y) and side (z) coordinates. For this example,
we considered only the shape of the inner parts of the face
again, and ignored the neck, the forehead, the ears and the

texture. The figures show the average facial shape and texture
in these areas.

A. CCA Attributes Mapped to Semantically Meaningful
Characteristics

The visualization of correlations (Section III) has shown
that the estimated pairs of attribute vectors do not describe
only one specific facial characteristic, but rather several
combinations of different characteristics. In order to explore
which facial characteristics are in the correlated attributes
and to obtain verbal descriptions, we propose a method for
automated exploration. This is achieved by projecting the
estimated attribute vectors (for example as,k and at,k for
correlation between shape and texture) to predefined attribute
vectors that describe only one semantically meaningful facial
characteristic each. 50 such attribute vectors are generated
with the method from Section I-B and manual labelling of
the database faces with respect to overall shape of the face or
the cheeks, the shape of the mouth, the eyes or the eyebrows
or one specific texture characteristics, such as the brightness
of the eyes, the lips or the eyebrows.



α1 α2 α3

narrow/wide eyes 0.1094 -0.0923 0.348
convex/concave nose 0.0469 0.3198 0.0952

male/female -0.0719 -0.2552 0.0572
round/angular -0.2124 -0.0738 0.1488

length of nosebridge 0.0441 0.0116 -0.3363
straight/curved eyebrows -0.0712 -0.1991 0.4021
thin/thick of eyebrows 0.2828 0.2403 -0.379

Fig. 5: Comparison between the shape coefficients αk of the
calculated attribute vectors as,k and the coefficients of the
predefined attributes.

Now a comparison of the predefined vectors with the
estimated basis vectors calculated by CCA is possible. Since
the correlations are calculated with Equation (22), the es-
timated pairs of attribute vectors are already represented
by the face-space coefficients αk and βk. The predefined
attribute vectors can be converted into this representation
as well by projecting each of the 35 principal component
us,i or ut,i onto each vector. To compare the calculated
with the predefined attribute vectors, the scalar product
between the coefficients serves as the rating criterion. So,
for the estimated shape attribute vector as,k and a predefined
attribute vector as,eyes that describes the shape of the eyes,

ratingk,eye =
< αk,αeye >

‖αk‖‖αeye‖
, (23)

with αk as a coefficient vector for as,k and αeye as the
coefficient vector for as,eye.

With this method we evaluated the correlations between
facial shape and texture as well as several other combinations
(e.g. between frontal and side information, between eyes
and mouth). In the following, we take a closer look at the
correlation between shape and texture, using the set of 50
predefined attribute vectors.

The analysis is restricted to the most reliable non-random
correlations according to the Monte-Carlo simulation II-D,
so we use only the sets of attribute vectors with a correlation
coefficient rk greater than the largest correlation coefficient
of the permuted datasets. In case of correlations between
shape and texture (using 35 principal components), 11 pairs
of attribute vectors (as,k and at,k with k ∈ 1, .., 11) are used,
since r11 = 0.7717 is the last correlation coefficient greater
than the highest correlation coefficient r1,permuted = 0.7438
of the permuted input data.

B. Results of CCA Projection
To illustrate this method, Figure 5 and 6 lists the ratings for

the exploration of correlations between shape and texture. In
this table, only a selection of the most informative predefined
attribute vectors are listed, as well only the pairs of attribute
vectors with the 3 largest correlations (for a visualization of
these 3 vectors pairs see Figure 3).

The sign of the rating values has to be treated like the
labels li used in the attribute mapping function (see Equation
(7 in Section II-A). So, consider as,round/angular as an
defined attribute vector, so that the addition modifies the

β1 β2 β3

dark/bright eyes 0.162 0.0937 0.3593
beard shadow -0.1374 0.2143 0.0798

light/dark eyebrows 0.3364 0.3046 -0.6342
male/female -0.0012 -0.3391 0.0361

Fig. 6: Comparison between the texture coefficients βk of
the calculated attribute vectors at,k and the coefficients of
the predefined attributes.

overall shape towards an angular shape and the subtraction
towards a round facial shape and let as,1 be the estimated
attribute vector for shape with the highest correlation. Than a
negative rating value denotes that the correlation of a round
overall shape is described within the first pairs of attribute
vectors.

Figure 5 and 6 shows that the automatic exploration
of the correlation between shape and texture is consistent
with the renderings (see Section III) and further illustrates
more relations. Concerning the second pair of estimated
attributes (α2 for shape and β2 for texture, second columns
in Figure 5 and 6) the highest ratings are consistent with
the visual appearance. The method indicates a correlation
between gender and the shape of the nose. A beard shadow
seems to be related with a concave nose, as well as thick
eyebrows. It also shows that these findings are related to a
male appearance. Also a slop chin, with a convex nose thin
eyebrows occur more often among females apparently.

The correlation of the third pair of attribute vectors ((α3

for shape and β3 for texture in Figure 5 and 6) suggests
that the width of the eyes is related to the brightness of the
eyebrows, as well as to the brightness of the eyes. That is
also consistent with the visualization in Figure 3.

IV. CCA PREDICTION OF OCCLUDED AREAS

If predictions from visible to invisible structures of faces
are based on correlation, and CCA with our Monte-Carlo
simulation helps to identify reliable correlations and avoid
random ones, we would expect that our CCA components
provide better predictions than standard PCA, as used for
example by [16].

In our experiments, we considered several correlations
between facial parts: between frontal and side, between the
entire face and eyes, between the entire face and mouth,
between upper and lower part, shape and texture. We calcu-
lated a PCA for each facial part and used CCA to find pairs
of correlated attribute vectors in the subspaces spanned by
35 principal components. Similar to the inference technique
described in [16], we used multivariate linear regression
(MLR [12]) to infer from one facial part to the other.
For example, the linear coefficients of the upper part (with
respect to its PCA basis vectors) can be predicted from the
linear coefficients of the lower part.

To compare the PCA with the CCA, our approach was to
build linear combinations of the estimated attribute vectors
to generate new faces. We used only the sets of attribute
vectors with a greater correlation coefficient than the largest
correlation coefficient of the permuted datasets (see Section



III), which in our case is in the range between 8 and 13
pairs. Since the attribute vectors are not pairwise orthogonal,
a linear combination of attribute vectors is not possible
directly. Instead, the attribute mapping function is applied
to calculate the labels for all pairs of face parts. Then, MLR
is trained to map the labels from one part to those of the
other. For prediction of unknown data, the mapping gives
us the labels for the invisible part, and a pseudoinverse
calculation defines the coefficients of the non-orthogonal
attribute vectors that reproduce these target labels up to a
minimal least-squares error.

Overall, we ran 12 experiments with different tasks. In one
experimental setup the ground truth of the whole face and
the whole face with the prediction of the lower part by CCA
and by the PCA-based method was shown. The task was to
rate which of the predictions are closer to the ground truth.
In another setup only two images are shown. For example the
upper part of the face completed with the prediction of the
lower part by CCA and by the PCA-based method. Now the
task was to rate which prediction is more plausible, without
knowing the ground truth.

These two tasks were run with prediction of the eye region
(including eyes and eyebrows) and mouth region from the
remaining face regions, as well front view to side view. We
also modified the experiments by adding a third PCA-based
prediction method LinVert as in [16].

In none of our pilot studies (3 to 4 participants each, 200
trials) did we find any trends towards preferences to any of
the prediction methods. Since it is difficult to establish the
absence of an effect experimentally, further measurements
with more participants made little sense. Still, we conclude
at this point that CCA is unlikely to be superior to the PCA-
based methods in this setting. On the positive side, PCA
seems to capture correlations sufficiently and is not affected
by spurious random correlations in the limited training set.

V. DISCUSSION

The results presented in this paper shed new light on
the chances and limitations of inferences from visible to
invisible structures in faces, both by the human visual system
and by computer graphics or vision. We identified the most
highly correlated dimensions in the face space of shapes and
the space of textures, respectively, or in vector spaces built
from disjoint facial regions. To the best of our knowledge,
we were the first to apply CCA to human face data. Our
Monte-Carlo simulation (Section II-D) helped to eliminate
random correlations and find the true ones in our dataset
by reducing the CCA problem to an appropriate, lower
dimensional subspace.

We had expected a substantial improvement of the pre-
dictive power of our model based on CCA, as opposed
to PCA, and we had hoped to be able to verify this in
an experiment that compares our computational predictions
with the expectations of human observers. It is slightly
disappointing, yet not less instructive and worth reporting, to
find that no improvement was found: Even though simple,
PCA-based prediction tends to rely both on true and on
spurious correlations, the result looks just as similar to the
ground truth, and just as plausible to human observers. This

corroborates the findings of [16] that indicated that human
expectation is in line with a PCA based prediction in the
case of guessing profiles from front views of faces.

Given random pairs of high-dimensional sample vectors
(si, ti), you will always find directions that are highly
correlated. This is what the Monte-Carlo simulation (Section
II-D) quantified. However, it is unlikely to obtain the same
randomly correlated directions in different training sets, so
we would not conclude that the human visual system is more
like PCA than like CCA. Instead, the differences between
PCA-based prediction, CCA-based prediction, human expec-
tation and ground truth seem to be equally far in different
directions and within the range of residual unpredictiveness
of faces.
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