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Abstract

This paper presents a fully automated algorithm for re-
constructing a textured 3D model of a face from a single
photograph or a raw video stream. The algorithm is based
on a combination of Support Vector Machines (SVMs) and
a Morphable Model of 3D faces. After SVM face detec-
tion, individual facial features are detected using a novel
regression- and classification-based approach, and proba-
bilistically plausible configurations of features are selected
to produce a list of candidates for several facial feature po-
sitions. In the next step, the configurations of feature points
are evaluated using a novel criterion that is based on a
Morphable Model and a combination of linear projections.
To make the algorithm robust with respect to head orien-
tation, this process is iterated while the estimate of pose is
refined. Finally, the feature points initialize a model-fitting
procedure of the Morphable Model. The result is a high-
resolution 3D surface model.

1. Introduction
For reconstruction of 3D faces from image data, there

are a variety of approaches that rely on different sources of
depth information: some perform triangulation from mul-
tiple simultaneous views, e.g. stereo or multiview-video
methods. Others use multiple consecutive monocular views
in video streams for structure-from-motion or silhouette-
based approaches. Finally, there are algorithms that rely on
single still images only, for example by exploiting shading
information (shape-from-shading) or by fitting face models
to single images. In this paper, we propose an algorithm for
3D reconstruction that
• can be applied either to single still images or to raw

monocular video streams,
• operates at a wide range of poses and illuminations,
• involves zero user interaction,
• produces close-to-photorealistic 3D reconstructions.

To perform this task, we are building a system which in-
tegrates two well-known techniques: Support Vector Ma-
chines (SVMs) and 3D Morphable Models (3DMM). The
processing steps of our algorithm (Figure 1) are

1. Face Detection using SVM

2. For video data: selection of the best frame
3. Coarse estimate of pose based on regression
4. Facial component detection using regression and clas-

sification
5. Selection of the most plausible combination of compo-

nents based on Gaussian distributions
6. Selection of the most plausible nose position based on

a Morphable Model
7. Fast fit of the 3DMM for pose estimation
8. Iteration of step 4 to 7 until pose estimation is stable
9. Full 3D reconstruction.
The integration involves several extensions of the system

parts: For facial component detection, we train an array of
regressors for each component, as opposed to only one re-
gressor used in existing algorithms. The detection results
are then refined by a classification-based approach which
combines SVM-based component detections and the prior
distribution of their joint configurations. We train and test
the classifiers based on the results of the regression-based
method. This helps to filter out image regions far from the
facial components and accordingly prevents the training of
an SVM from being disturbed by irrelevant image informa-
tion. The component detectors are view-specific, and they
are trained on synthetic data produced by the 3DMM. More-
over, we propose a novel, model-based criterion for plau-
sibility of component configurations. This involves a new
method for estimating texture from images (Section 4) that
is more efficient than the iterative model-fitting that we use
for the final reconstruction.

Figure 1. Flow diagram of the automatic face fitting system.
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For reconstruction from video, our system selects a sin-
gle, suitable frame from the video automatically, and per-
forms model-based reconstruction from this frame. This
is in contrast to previous work in model-based shape re-
construction from monocular video, which involved an
analysis of multiple frames, such as model-driven bundle-
adjustment [13], least-squares reconstruction from multiple
successive frames [11], structure-from-motion with subse-
quent refinement by a deformable face model [8], nonrigid
structure-from-motion with intrinsic model constraints [5]
and feature tracking and factorization of the tracking ma-
trix for non-rigid shape estimation [6]. Zhang et al. [28]
presented an algorithm that involves tracking, model fitting
and multiple-view bundle adjustment. Many of these al-
gorithms require manual interaction such as a number of
mouse clicks.

Unlike previous model-based algorithms for 3D face re-
construction from single images [3,4,17], the combined al-
gorithm no longer requires manual rigid pre-alignment of
the 3D model or manual labeling of features on the 2D im-
age. Xiao et al. [25] presented a combination of Active Ap-
pearance Models and 3D Morphable Models that tracks fea-
tures in realtime in videos, and reconstructs a face mesh for
each frame. This system is very impressive, but so far the
authors have only used a low-resolution face mesh that does
not generate photo-realistic face reconstructions.

An automated algorithm for aligning a 3D face model
to a single image has been proposed by Gu and Kanade
[14]. Based on a Morphable Model of 3D shape and view-
based patches located at 190 points, the model is iteratively
aligned with the features in the image using an EM algo-
rithm. The Morphable Model, the feature-based approach
and the usage of a pose estimate are similar to our system.
However, we use different feature detection algorithms and
a different optimization strategy and for the final reconstruc-
tion, we fit all model vertices to the image in an analysis-
by-synthesis loop that optimizes all facial details and com-
pensates for lighting and other imaging parameters.

Xin et al. [26] recovered 3D face shape from a video
containing a face rotating from frontal view to profile view.
Based on image sequence segmentation, they estimate 2D
features, head poses and underlying 3D face shape, using
a morphable model resembling ours. In contrast, we use
features for initialisation only, and then fit to greylevels in
the image for more detailed reconstruction.

Heisele et al. used synthetic images to train SVM-based
viewpoint-independent feature detectors [15]. For more re-
lated work in the feature detection literature, which involves
SVM-based methods [18,21], we refer the readers to the ex-
cellent survey of Yang et al. [27].

2. Detection of faces and facial components
2.1. Face detection

As a first step, a face detector is applied to the input im-
age or video. For this purpose, two publicly available face
detection libraries for Matlab were considered: an approach

based on SVMs [16], and an implementation of the widely
used Boosting based detector [24]. We chose the SVM im-
plementation which also returns a confidence value together
with each detected face. In our fully-automatic system,
the confidence estimates are used to resolve ambiguities: if
there are more than one detections in an image or a video,
we discard all but the one for which the detector is most
confident. The input image is cropped to a square region
around the most confident position, and is then rescaled to
200 × 200 pixels. This is the reference coordinate system
used in all subsequent processing steps.

2.2. Categorization of faces based on rotation angles
Faces show a significant variation in shapes in the view-

ing plane depending on the 3d rotations. To facilitate
the training of subsequent view-based component detection
(Secs. 2.3-2.4), the face images are categorized based on
the rotation angles such that a component detector is trained
for each category. This allows each component detector to
focus on similar views. Training categories are found by
uniformly quantizing the interval of tangent values of hor-
izontal rotation [−1, 1] (corresponding to [−45◦, 45◦]) into
seven bins.

For testing, the rotation angle of the input face image
is estimated by regression. The input face image is scaled
down to 40 × 40 and the Kernel Ridge Regression (KRR)
is applied to get the tangent of the angle. The estimated
angle is then used to choose a proper component detector.
Because the KRR provides only rough estimation of angles
with an average error rate around 7◦, the estimated angles
are refined later by iteration through alternating the compo-
nent detection and face fitting (cf., Fig. 1 and Sec. 4).

2.3. Facial component detection based on regression
The third stage computes position estimates of eye and

mouth corners, which we here refer to as the Components
Of Interest (COI), in the 200 × 200 image. For this pur-
pose, we developed a novel algorithm, which can be seen
as a generalization of the regression method proposed by
[12]. It predicts the position of a COI from pixel intensities
within a k × k window. Invariance under intensity changes
is achieved by subtracting the mean value from each win-
dow, and dividing it by its standard deviation. The KRR is
adopted for this purpose (see Sec. 2.6 for details). The nov-
elty of our approach is that for each facial component we
train an array of 12 × 12 = 144 regressors, as opposed to
only one [12]. All of them predict the same quantity, but
they are trained on different k× k regions on the 200× 200
image, evenly spaced on a 12 × 12 grid (see Fig. 2, left
image). To predict the position of that component in a test
image, all 144 estimates are computed, and then binned into
1-pixel-sized bins. The bin with the most votes is chosen as
the predicted location. The rationale behind this is that faces
cannot be arbitrarily deformed, and thus the appearance of
facial regions away from the component in question can be
informative about its position. The use of 144 regressors
makes the detector extremely redundant and therefore ro-



Figure 2. Regression-based detection of facial components. Left:
illustration of the regressor array. For each component (e.g., a
corner of the mouth, here marked dark blue) 144 regressors are
learned. Each one operates on a different image region, centered
at one of the light blue points. Right: prediction on a corrupted
test image (the left eye region is covered with a white rectangle).
Plus marks indicate desired component locations.

bust to occlusions and other local changes. This effect is
shown in Fig. 2.

2.4. Refinement of component detection based on
classification

The regression-based approach is fast and robust. How-
ever, it turns out that its accuracy is not sufficient for sub-
sequently fitting the 3D face model. In the present section,
we present a classification-based method which is built on
top of the regression-based component detection. The basic
idea is to scan the input face image I with a small window
and classify the central pixel of the window, using an SVM,
as belonging to either the COI, or background.

We generated training examples for the classifier by sam-
pling small windows from locations with pre-defined dis-
tances of the ground truth locations. Positive examples have
their reference point in a 3 × 3 window around the ground
truth location; negative examples, on the other hand, have it
inside a 29 × 29 window, excluding the central 9 × 9 such
that the training is not affected by ambiguous patterns. The
29 × 29 window for sampling negative examples is moti-
vated by the typical location error of the regression-based
method which lies within the range of 0 to 12 pixel dis-
tances from the true COI locations.

In the classification stage, instead of scanning the entire
face image, the search space for a given COI is restricted
as a 25 × 25 window surrounding the regression-based de-
tection. While it is more accurate than the regression-based
method, the problem of the classification method is that it
does not automatically single out a detection. Instead, it
either produces a detection blob around the COI or some-
times produces no detection. Thus, if the detection blob for
a given COI is too small (or zero), we adjust the decision
threshold of the SVM such that the blob size is larger than
or equal to a predetermined threshold r.

In the next step, the individual detection results need
to be combined, taking into account a prior in the space
of joint configurations. A configuration of eye and
mouth corners constitutes a 13-dimensional vector H =
(h1, . . . , h6, hφ) = ((hx

1 , hy
1), . . . , (h

x
6 , hy

6), hφ) ((x, y)-
coordinates values for six components and the horizontal
rotation angle φ). Then, the best detection vector is ob-

tained by first generating 100,000 random vectors (by sam-
pling two dimensional vectors ((x, y)-coordinates)) from
each component blob and concatenating them to constitute
12(+1)-dimensional vectors, and then choosing the maxi-
mizer of the following objective function.

C(H) = α
∑

i=1,...,6

log
(

1
1 + exp (−gi(Wi))

)
−M(H),

(1)
where gi(Wi) is the real-valued output of the i-th SVM for
the input image window Wi corresponding to the coordinate
hi, and M(H) is the Mahalanobis distance of configuration
H to the mean of a Gaussian distribution estimated based
on training configurations. We motivate this cost function
as follows. Suppose we want to obtain the most probable
configuration

H∗ = arg max P (H = O|I),

where O = (o1, . . . , o6, oφ) is the unknown ground truth
configuration. The cost function (1) is then obtained as a
result of the following series of approximations
C(H) ≈ P (W1, . . . ,W6|H = O)P (H = O)

≈
∏

i=1,...,6

P (Wi|hi = oi, hφ = oφ)P (H = O)

≈
∑

i=1,...,6

log P (Wi|hi = oi, hφ = oφ)−M(H),

where the first line applies the Bayes formula and re-
places the image by the small windows (Wi), the sec-
ond line corresponds to an independence assumption of
the component likelihoods plus pre-categorization of face
images, and the third line assumes a Gaussian distribu-
tion of the configurations H . The last step is to substitute
P (Wi|hi = oi, hφ = oφ) with the component detection
posterior P (hi = oi, hφ = oφ|Wi) calculated based on
Platt’s method [20], assuming a uniform distribution over
hi, hφ within a small region generated by the rough detec-
tor.

This technique of replacing the likelihood by the pos-
terior estimated from a discriminative classifier has shown
to improve the discrimination capability of generative mod-
els [9, 22].

In the computation of P (H), the (x, y)-coordinate of the
outer corner of the left eye was used as the origin (0, 0), and
the width and height of the bounding box for the joint con-
figuration were normalized by dividing by the width of the
original box. Accordingly, H is a 11-dimensional vector.

In addition to the eye and mouth corners, we also use
nose tip for fitting the 3D face model. However, it turns
out that the nose is very hard to identify from local fea-
tures alone which both the regression-based and classifica-
tion based methods rely on. Accordingly, the nose detection
is performed in a separate step which will be explained in
Sec. 4. To facilitate this, we generate several nose candi-
dates based on detected eye and mouth corners. A condi-
tional Gaussian model of nose tip location given the eye



Figure 3. Comparison between different reduced set methods.

and mouth corners are estimated from which the nose can-
didates are obtained by thresholding based on Mahalanobis
distance.

2.5. Reduced set method
In the preliminary experiments, the number of support

vectors for SVM-based component detectors ranged from
around 2,000 to 5,000. This resulted in processing time
of more than 10 minutes per image. To reduce the time
complexity, this paper adopts the reduced set method [7,23]
which finds a sparse solution

g(·) =
Nb∑
i=1

αik(·,bi)

as an approximation of the original SVM solution f . In
the original reduced set method, the approximation error is
measured by F(g) = ‖g − f‖2

H, where H is the Repro-
ducing Kernel Hilbert Space corresponding to the kernel
function of SVM. However, this does not consider the dis-
tribution of data P (x). In this paper, we find the solution
g(∈ H) as the minimizer of a new cost functional

G(g) =
∑
x∈X

(g(x)− f(x))2,

where X is a finite set of data sampled according to P (x).
Informally, this cost functional allows us to find the sparse
solution by putting more emphasis on high-density regions.

The solution g is found by first initializing the basis
{b1, . . . ,bNb

} by k-means on a set of unlabeled data XU ,
and then performing the gradient descent on the regularized
cost functional

F(g) = λ‖g‖2
H +

∑
x∈XU

(g(x)− f(x))2,

where f(x) denotes the output of the SVM at x. λ is ob-
tained by cross-validation. For all component detectors, we
set the number of basis vectors Nb to 200. To gain an in-
sight into the performance of the proposed reduced method,
the classification error rates for a test set which is disjoint
from the training set is compared with two implementations
of existing reduced set method for case of the outer corner
of left eye component: fixed point iteration ( [23]) and gra-
dient descent ( [7]). Fig. 3 summarizes the results.

2.6. Training
For training the rough angle estimator and the compo-

nent detectors, we used 3,070 synthetic images obtained

from 307 3D faces. 107 of these 3D faces were recon-
structed from single images of the FERET database [19]
using the algorithm described in [4], and 200 3D faces
were from laser scans [4]. The synthetic images were ren-
dered from the 3D faces by varying the azimuth angle ran-
domly in [−45◦, 45◦] with a uniform distribution, varying
pitch in [−20◦, 20◦], and the azimuth and height of the
light in [−45◦, 45◦]. Also, the relative contribution of di-
rected and ambient light was varied randomly. Gaussian
kernels (K(x,y) = exp(−γ‖x−y‖2)) were utilized for the
KRRs and SVMs whose parameters were found by cross-
validation. For the KRR componenet detector, the size of
the regression input k and a scaling factor s by which the
image was downscaled before sampling the k × k window
were set to 9 and 0.1, respectively. For each SVM detec-
tor, around 20,000 to 40,000 training patterns are collected
from these 3,070 faces. The input window size for eye and
mouth detection was determined as (31× 31) which for the
eye case, roughly corresponds to the average length of the
eye in (200 × 200)-size frontal face images. The blob size
threshold r and α in Eq. (1) were empirically set to 25 and 4,
respectively. We did not find the parameters to affect the re-
sults significantly, but would expect that a future choice by
cross validation could somewhat improve the performance.

The threshold for choosing nose candidates from eye and
mouth corner detection is set to be 1.1. This value ensures
that the resulting candidate set includes desired nose points
for the entire training set. However, instead of investigating
all the candidates, we use only a small subset sampled with
a regular interval (3 pixels for each dimension) in an image
domain so that on average, the number of actual candidates
are around 100.

3. A Morphable Model of 3D Faces
For selecting the optimal nose position, estimating pose

and for the subsequent reconstruction of a high-resolution
3D mesh, we use a Morphable Model of 3D faces [3], which
was built by establishing dense correspondence on scans
of 200 individuals who are not in the test sets used below.
Shape vectors are formed by the x, y, z-coordinates of all
vertices j ∈ {1, . . . , n}, n = 75, 972 of a polygon mesh,
and texture vectors are formed by red, green, and blue val-
ues:

Si = (x1, y1, z1, x2, . . . , xn, yn, zn)T (2)

Ti = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T . (3)

By Principal Component Analysis (PCA), we obtain a
set of m’ orthogonal principal components si, ti, and the
standard deviations σS,i and σT,i around the averages s and
t. In the following, we use the m′ = 50 most relevant
principal components only.

4. Model-Based Feature Confidence
In this section, we propose a novel, 3D-based confidence

measure for the plausibility of a configuration of 2D fea-
tures. We consider the following feature points: the tip of



the nose, the corners of the mouth, and the external corners
of the eyes.

For each of the feature points j = 1, ..., 5, we have the
image positions (hx

j , hy
j ) and we know which vertex kj of

the model it corresponds to. We can now find the linear
combination of examples and the 3D rotation, scale and
translation that reproduces these positions best. We do this
with an efficient, quasi-linear approach [2] that we summa-
rize below. This defines a new criterion for confidence in
terms of 3D distortion, based on the Mahalanobis distance
from the average face.

To assess how well the reconstructed face fits to the pixel
values in the image, we modify the quasi-linear algorithm:
After shape fitting, we can look up the desired color or grey
values of the image for each vertex. Unlike the algorithm
in Section 5, we assume simple ambient illumination here.
For finding the optimal nose position, it has turned out to
be best to use only vertices in the nose region. The color
values (Rkj

, Gkj
, Bkj

) for vertices kj are reconstructed by
the textures of the Morphable Model using the algorithm
described in this section. Again, Mahalanobis distance is
used as a confidence measure. For grey-level images, we
replace colors in the Morphable Model by grey-levels.

Both the coarse shape and texture reconstruction is
achieved by a Maximum a Posteriori estimate. In the fol-
lowing, let either v = S or v = T, and

x = v − v, v =
1
m

m∑
i=1

vi. (4)

In this unified notation, let si be the eigenvectors from
PCA, and σi the standard deviations which we include as
explicit factors in the expansion

x =
m′∑
i=1

ciσisi = (σ1s1, σ2s2, ...) · c (5)

so the estimated normal distribution takes the simple form

p(c) = νc · e−
1
2‖c‖

2
, νc = (2π)−m′/2. (6)

Now let a reduced set of model data be a vector r ∈ IRl:
By a projection operator, we select coordinates of 5 feature
points kj from the full vectors v, perform orthographic pro-
jection, rotation and scaling to obtain 5 2D image positions
(l = 2 · 5.) In a similar way, we select texture values of
vertices and may change contrast in the color channels. For
the moment, assume that these operations are known and
combined to a linear operator, respectively:

r = Lv L : IRn 7→ IRl. (7)

ymodel = r− Lv = Lx (8)

ymodel = L
∑

i

ciσisi =
∑

i

ciqi = Qc (9)

where qi = L(σisi) ∈ IRl are the reduced versions of
the scaled eigenvectors, and

Q = (q1,q2, ...) ∈ IRl×m′
. (10)

Given the observed vector y ∈ Rl, we are looking for the
coefficients c with maximum posterior probability P (c|y).

As an intermediate step, consider the likelihood of mea-
suring y, given c: We assume that each dimension j of
the measured vector y is subject to uncorrelated Gaussian
noise with a variance σ2

N . Then, the likelihood of measur-
ing y ∈ IRl is given by

P (y|ymodel) =
l∏

j=1

P (yj |ymodel,j) (11)

=
l∏

j=1

νN · e
− 1

2σ2
N

(ymodel,j−yj)
2

= νl
N · e

− 1
2σ2

N

‖ymodel−y‖2

(12)
with a normalization factor νN . In terms of the model

parameters c, the likelihood is

P (y|c) = νl
N · e

− 1
2σ2

N

‖Qc−y‖2
. (13)

According to Bayes Rule, the posterior probability is
P (c|y) = ν · P (y|c) · p(c). (14)

with a constant factor ν = (
∫

P (y|c′)·p(c′)dc′)−1.
Substituting (6) and (13) yields

P (c|y) = ν · νl
N · νc · e

− 1
2σ2

N

‖Qc−y‖2
· e− 1

2‖c‖
2
, (15)

which is maximized by minimizing the cost function

E = −2 · logP (c|y) =
1

σ2
N

‖Qc− y‖2 + ‖c‖2. + const.

(16)
Using a Singular Value Decomposition Q = UWVT

with a diagonal matrix W = diag(wi), it can be shown [2]
that the optimal coefficients are

c = Vdiag(
wi

w2
i + σ2

N

)UT y. (17)

As a confidence measure for feature points, we propose
‖cshape‖+ ‖ctexture‖.

In order to deal with unknown position, orientation and
scale, we use the method of [2], which is to treat not only
translation, but also rotation and scaling as additive terms,
and add a set of vectors si and coefficients ci to the sys-
tem. For rotation, this is a first-order approximation only.
From cγ , cθ, cφ, we recover the angles γ, θ, φ, then update
L and iterate the process, which gives a stable solution af-
ter the second pass. For the estimation of texture, we apply
the same method to deal with gains and offsets in the color
channels.

5. 3D Face Reconstruction by Model Fitting
In an analysis-by-synthesis loop, we find the face vec-

tor from the Morphable Model that fits the image best in
terms of pixel-by-pixel color difference. This optimization
is achieved by an algorithm that was presented in [4]. For
the optimization to converge, the algorithm has to be ini-
tialized with the feature coordinates of the 5 feature points
provided by the previous processing steps.

The algorithm optimizes the linear coefficients for shape
and texture, but also 3D orientation and position, focal
length of the camera, angle, color and intensity of directed



light, intensity and color of ambient light, color contrast as
well as gains and offsets in each color channel.

In the algorithm, the fitting algorithm is used twice (Fig-
ure 1): In a fast fit with a reduced number of iterations, the
system estimates the azimuth angle φ. Given the optimal set
of feature points, the final reconstruction is then computed
by a full fit. Since the linear combination of textures Ti

cannot reproduce all local characteristics of the novel face,
such as moles or scars, we extract the person’s true texture
from the image and correct for illumination [3].

6. Results
We tested our algorithm on 6 videos and 870 images cor-

responding to the 87 individuals from the FERET database
[19] who were not in the training set. The face detec-
tion algorithm succeeded in 705 out of 870 images, at a
computation time of less than 50 ms per image on a stan-
dard PC. A single step of detecting the facial components
and classification-based refinement took around 7 seconds
per face. The component detection results were evalu-
ated by measuring the average Euclidean distance of the 7
components from manually labeled ground truth within the
rescaled face images (200 × 200 pixels). For comparison,
four variants of existing classification-based methods were
implemented. The independent SVM-based method scans
the input image within a candidate region for each COI
(based on the estimateed Gaussian distribution of the COI
location in the training set, hereafter referred to as Gaussian
prior) and produces the detection as the location with the
highest SVM score. The connected components method,
inspired by [1], first generates a binary image for each COI
with the pixel values corresponding to the SVM classifica-
tion labels (COI or background). The location of the COI
is then obtained as the mean of the connected component of
the COI labels yielding the highest evidence, assuming the
above-mentioned Gaussian prior. The Bayesian component
detector, inspired by [12], models pixel values within a win-
dow around each COI and background as Gaussian distribu-
tions. The location of a COI is then obtained as the position
of the window that yields the greatest log-likelihood ratio
among a set of candidate locations within the smallest rect-
angle ecompassing all the training data locations. The pair-
wise reinforcement of feature responses (PRFR) is based on
the idea of Cristinacce et al. [10], i.e., the individual COI de-
tections obtained from each SVM are refined based on their
distributions conditioned on the other components. Details
of the refinement procedure can be found in [10].1 Table 1
summarizes the results.

Tables 2 and 3 list the average errors compared to man-
ually labeled features for different feature types and for dif-
ferent viewing angles of the original images. The angles in
Table 3 are estimates from [4].

Reconstruction was performed based on four points

1In the original work of Cristinacce et al. [10], a boosting classifier is
utilized while we used the SVM to facilitate comparison between different
methods.

component detection method average error (pixels)

independent SVM 8.30
connected components 7.05

PRFR 8.17
Bayesian 6.50

proposed (rough detection) 6.51
proposed (single iteration) 4.56

proposed 4.52

Table 1. Performance of different component detection methods:
’rough detection’ refers to the KRR-based detection (cf., Sec. 2.3);
’single iteration’ stands for a single iteration of the component de-
tection and fitting (with the rotation angle obtained from the rough
estimator).

left
eye o

right
eye o

nose left
mouth

right
mouth

left
eye i

right
eye i

Ø error 4.78 4.97 6.09 4.39 4.53 3.71 4.20

Table 2. Average errors (pixels) per feature over all views (o: outer
corner; i: inner corner)

ba bb bc bd be
1.1◦ 38.9◦ 27.4◦ 18.9◦ 11.2◦

Ø error 3.92 6.03 4.89 5.14 4.19

bf bg bh bi bk
−7.1◦ −16.3◦ −26.5◦ −37.9◦ 0.1◦

Ø error 3.35 3.66 4.82 6.29 4.40

Table 3. Average errors (pixels) over all features per view

very good good acceptable bad
% 12.86 24.09 28.93 34.12

Table 4. Average rating of 200 examples by 49 participants.

given by the facial component detection (external corners
of the eyes, and corners of the mouth) and the nose posi-
tion returned by the model-based confidence measure. The
computation time is approximately 3 minutes. Our system
does not produce veridical, but plausible and photorealis-
tic 3D models consistent with the input images. Hence we
evaluated it using two perceptual experiments that reflect
the demands of many potential real-world applications.

From all 705 successful reconstructions, we randomly
selected 200, and collected ratings by 49 participants. Each
participant saw the original image and two views of the
reconstructed face. Some participants rated only a subset
of faces, so we obtained an average of 24 ratings per face
(4,815 ratings in total) according to the following instruc-
tions: ”The following 3D reconstructions are supposed to
be used as personalized avatars in a game. Divide the re-
sults into four groups: very good, good, acceptable and
bad.” Their ratings are shown in Tab. 4, and typical exam-
ples are shown in Fig. 4. Given the instructions, the criteria
and standards were deliberately left open to the judgements
of the participants. Still, we found that the ratings were
overall positive and promising. To demonstrate the quality
and variability of the results, images of the reconstructed
faces without textures are shown in Fig. 5.



participant better same quality worse
1 10% 26% 64%
2 22% 24% 54%
3 16.5% 29% 54.5%

Table 5. Percentage of faces where participants found the auto-
mated reconstruction better, equal or worse than the reconstruction
from manual labeling in a side by side comparison.

Figure 6. Fully automated reconstruction from an automatically
detected single frame of a webcam video. From left to right: orig-
inal frame, color coded results of the model-based measure (the
darker the better, best position marked green) and the automati-
cally reconstructed head. The bottom row shows 7 sample frames.

In the second experiment, we showed the automated re-
construction and the reconstruction from manually labeled
features side by side in random order for each face, along
with the original image. Participants were instructed to se-
lect the reconstruction that looks better. The results in Ta-
ble 5 indicate that the automated algorithm is competitive in
many cases, even though it does not fully match the quality
of the manual initialization.

The 6 videos were recorded with a webcam (Logitech
QuickCam pro 4000). Each video shows a moving person,
e.g. turning their heads, taking glasses off and on, moving
forward and backward, etc. The recording speed was 30
frames/sec. and the resolution of each frame was 320 ×
240. Our face detection algorithm attempts to detect faces
in every frame, and returns the single frame with maximum
detection score. Component detection, confidence measure
for the feature points and finally the reconstruction proceed
the same way as for the still images. For all video examples
we got similar results, one of which is shown in Fig. 6.

7. Conclusion
By combining Support Vector Machines and 3D Mor-

phable Models, we have addressed the problem of fully au-
tomated 3D shape reconstruction from raw video frames or
other images. The system has proved to be robust with re-
spect to a variety of imaging conditions, such as pose and
lighting. The results and the rating scores by human partic-
ipants demonstrate that the system produces a high percent-
age of photo-realistic reconstructions which makes it useful
for a wide range of applications.
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Figure 4. Two typical examples from each rating score level. From left to right: original image, novel view of the automated reconstruction,
original second view of the person for comparison, novel view of the reconstructed 3D model if features are labeled manually.

Figure 5. Images of the automated reconstructions without texture. Same faces as in Fig. 4 line by line.
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G. Rätsch, and A. J. Smola. Input space vs. feature space
in kernel-based methods. IEEE Transactions on Neural Net-
works, 10(5):1000–1017, 1999.

[24] P. Viola and M. Jones. Robust real-time face detection. Int.
Journal of Computer Vision, 57(2):137–154, 2004.

[25] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time

combined 2d+3d active appearance models. In CVPR, June
2004.

[26] L. Xin, Q. Wang, J. Tao, X. Tang, T. Tan, and H. Shum.
Automatic 3d face modeling from video. In ICCV, 2005.

[27] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in
images: a survey. PAMI, 24(1):34–58, 2002.

[28] Z. Zhang, Z. Liu, D. Adler, M. F. Cohen, E. Hanson, and
Y. Shan. Robust and rapid generation of animated faces from
video images: A model-based modeling approach. IJCV,
58(2):93–119, 2004.


