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Abstract. This paper presents a new approach for fitting a 3D mor-
phable model to images of faces, using self-adapting feature layers (SAFL).
The algorithm integrates feature detection into an iterative analysis-by-
synthesis framework, combining the robustness of feature search with the
flexibility of model fitting. Templates for facial features are created and
updated while the fitting algorithm converges, so the templates adapt
to the pose, illumination, shape and texture of the individual face. Un-
like most existing feature-based methods, the algorithm does not search
for the image locations with maximum response, which may be prone
to errors, but forms a tradeoff between feature likeness, global feature
configuration and image reconstruction error.
The benefit of the proposed method is an increased robustness of model
fitting with respect to errors in the initial feature point positions. Such
residual errors are a problem when feature detection and model fitting
are combined to form a fully automated face reconstruction or recogni-
tion system. We analyze the robustness in a face recognition scenario on
images from two databases: FRGC and FERET.

1 Introduction

Fitting generative models such as 3D morphable models (3DMM) or active ap-
pearance models (AAM) to images of faces has turned out to be a promising
approach to obtain a face-specific encoding of faces for recognition purposes. Due
to the 3D representation, 3DMMs can help to recognize faces at arbitrary poses
and illuminations [1]. A bottleneck in the development of automated fitting al-
gorithms is the initialization of the optimization. While early work has started
from a coarse alignment [2], later versions have relied on manually defined fea-
ture point positions [1]. Recently, a fully automated 3DMM fitting algorithm
has been presented [3] which uses Support Vector Machines (SVM) for the de-
tection of faces and facial features. However, the quality of the fit turned out to
depend critically on the precision of the facial features. The goal of this paper
is to integrate feature detection into the 3DMM fitting procedure.

In order to leverage the fact that 3DMM fitting can be applied to any pose
and illumination, it is important to have feature detectors that are either invari-
ant, or to rely on a set of different detectors, or - as we propose here - to have
adaptive feature detectors. In our approach, the feature detector is updated by
rendering an image of the current estimate of the face at the current estimate of
the imaging parameters several times during the optimization, and forming tem-
plates from predefined face regions. Unlike more powerful feature detectors such
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as SVM or AdaBoost [4], template matching (TM) does not require multiple
training samples.

The second contribution of this paper is a novel way to include facial features
into model fitting. Most existing algorithms find the image position with max-
imum response of the feature detector and pull the corresponding point of the
model towards this position. However, on difficult images, it may occur that the
feature response at the correct position is not the global maximum. Therefore, we
propose a strategy that forms a tradeoff between high feature detector response
and a plausible overall configuration. This is achieved by including the value of
the feature detector response as an additional term in the cost function of 3DMM
fitting, rather than the 2D distance between the current feature position of the
model and the position of the global maximum. Each feature detector response
forms an additional 2D array, or layer, that is used along with the three color
channel layers which form the image. On a more general level, the approach in-
troduces a new, high-level criterion for image similarity to analysis-by-synthesis
strategies. In fact, this can be implemented with any feature detector or any
other local descriptor of image properties.

2 Related Work

Detection of facial features and integration into face recognition systems have
been studied extensively in recent years. Still, robust feature detection in difficult
imaging conditions continues to be a challenge.

AdaBoost [4] is a well-known approach for face and facial feature detec-
tion. [5] use it to first detect candidates for eyes, nose and lips separately. From
the candidates, the combination with highest log-likelihood is chosen. Many ap-
proaches use coarse-to-fine strategies: [6] detect the head using AdaBoost and
get a first guess of the iris position using linear regression. At the next step a
weighted support vector machine (SVM), using only a small number of pixels
of the whole search area, refines the iris position. [7] use a cascade of global de-
formation, texture fitting and feature refinement to refine eye, mouth, nose and
eyebrow positions. [8] use a hierarchical face model composed of a coarse, global
AAM and local, detailed AAMs for each feature for refinement. This restricts
the influence of noise to the features directly nearby, and prevents it from affect-
ing the rest of the face. [9] and [10] both use a prior distribution map analyzing
AdaBoost face detection output as a starting condition, and refine the feature
positions using color values and a decision tree classifier [9], or using a Har-
risCornerDetector and a SVM to classify whether the detected corners belong
to a feature or not [10]. [11] find facial features indirectly by using templates for
parts of the face in connection with vectors that point from these regions to the
positions of the features. The final feature positions are weighted combinations
of the vectors.

Instead of refining the positions as in a coarse-to-fine approach, [12] combine
conventional algorithms in a sequence to get better initial values for characteris-
tic points: face detection by skin-color and luminance constraints, eye detection
by TM and symmetry enforcement, mouth and eyebrow detection both using
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luminance and geometry constraints. Other combined approaches have been
proposed by [13] who classify SURF local descriptors with SVMs: one SVM
to decide whether they belong to the face or not, followed by special SVMs for
each feature. [14] combine four feature detectors (DCT, GaborWavelets, ICA,
non-negative Matrix Factorization) on images at a reduced resolution. SVM
is performed to get the most reliable positions (highest SVM scores) for each
feature, and a graph based post-processing method is used to pick the best com-
bination of feature positions. Refinement of the feature positions at the end is
done using DCT again on full resolution.

A number of algorithms introduce local features to Active Shape Models
(ASM) and Active Appearance Models (AAM): [15] extend the ASM by fitting
more landmarks, using 2D-templates at some landmark positions and relaxing
the shape model wherever it is advantageous. To improve the result further,
they use the first alignment as start value for a second fitting with the new
ASM. [16] combine ASM and Haar wavelets. [17] use a similar approach to ours,
yet their 2D AAM model is designed for frontal or nearly frontal views of faces
only. They form facial feature detectors from an AAM and update them in an
iterative search algorithm. In each iteration, they find the feature positions with a
plausible 2D configuration (high prior probability) and, at the same time, a high
feature detector output. In contrast, we use a 3D model that contains additional
parameters for pose and illumination, use different methods to create feature
detectors and to fit the model, and we integrate the feature point criterion into
a cost function that includes overall image difference for a global analysis-by-
synthesis.

The first combination of feature detection with 3D morphable models (3DMM)
was presented by [18] who created local feature detectors for face recognition
from a 3DMM. Unlike our approach, they first reconstructed a face from a gallery
image, created virtual images using the 3DMM and then relied on SVM-based
local classifiers for recognition. [19] presented a patch based approach that is re-
lated to ours because it combines local feature detectors and a 3D shape model.
In contrast to our algorithm, however, the feature detectors are trained prior to
fitting, and the model fitting minimizes the 2D distances between image points
with maximum response of the feature detectors and the corresponding model
points. [20] first identify all potential feature points in the image by using SIFT
as a criterion for saliency, then reject those that are similar to none of the points
in the appearance model, and subsequently find the configuration of features in
the image and the mapping to features of the 3DMM that has a maximum like-
lihood. The resulting feature locations can be used to initialize a 3DMM fitting
procedure. [3] use SVM for detecting faces, estimating pose angles and finding
facial features. From a number of nose point candidates, a model-based crite-
rion selects the most plausible position. Then, these data are used to initialize
a 3DMM fitting algorithm and compute 3D reconstructions. Our approach may
be used in a similar general approach, but with an increased robustness to un-
precise initial feature positions. In a Multi-Features Fitting Algorithm for the
3DMM, [21] use a cost function that adds color difference, edge information and
the presence of specular highlights in each pixel. The algorithm is related to ours
because multiple features are used and a tradeoff is found for the match of each
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feature plus a prior probability term. However, we use features that are derived
from facial appearance, and we update these features during the optimization.

3 Morphable Model of 3D Faces

For the reconstruction of a high-resolution 3D mesh, we use a Morphable Model
of 3D faces (3DMM, [2]), which was built by establishing dense correspondence
on scans of 200 individuals who are not in the test sets used below. Shape vectors
are formed by the x, y, z-coordinates of all vertices k ∈ {1, . . . , n}, n = 75, 972 of
a polygon mesh, and texture vectors are formed by red, green, and blue values:

S = (x1, y1, z1, x2, . . . , xn, yn, zn)T (1)
T = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T . (2)

By Principal Component Analysis (PCA), we obtain a set of m orthogonal
principal components sj , tj , and the standard deviations σS,j and σT,j around
the averages s and t. In this paper, only the first 99 principal components of
shape and texture are used, because they cover most of the variance observed
in the training set. A larger number would increase the computation time while
not improving the results significantly.

In an analysis-by-synthesis loop, we find the face vector from the Morphable
Model that fits the image best in terms of pixel-by-pixel color difference between
the synthetic image Imodel (rendered by standard computer graphics techniques),
and the input image I:

EI =
∑
x,y

(I(x, y)− Imodel(x, y))2. (3)

The squared differences in all three color channels are added in EI . We sup-
press the indices for the separate color channels throughout this paper. The
optimization is achieved by an algorithm that was presented in [1, 2]. In each
iteration, the algorithm evaluates EI not on the entire image, but only on 40
random vertices. For the optimization to converge, the algorithm has to be ini-
tialized with the feature coordinates of at least 5 feature points.

The goal is to minimize the cost function

E = ηI · EI + ηM · EM + ηP · EP (4)

where EM is the sum of the squared distances between the 2D positions of
the marked feature points in the input image, and their current positions in the
model. EP is the Mahalanobis distance of the current solution from the average
face, which is related to the log of the prior probability of the current solution.
ηI , ηM and ηP are weights that are set heuristically: The optimization starts
with a conservative fit (ηM and ηP are high), and in the final iterations ηM = 0
and ηP is small.

The algorithm optimizes the linear coefficients for shape and texture, but
also 3D orientation and position, focal length of the camera, angle, color and
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intensity of directed light, intensity and color of ambient light, color contrast as
well as gains and offsets in each color channel.

4 Self-Adapting Features

Our proposed self-adapting feature approach is built on top of the 3DMM and
introduces a novel criterion in the cost function. The goal is to reduce the in-
fluence of the (potentially unreliable) initial feature positions that are used in
EM : they are only used for the first coarse alignment of the head, and discarded
later. After coarse alignment and a first estimation of the illumination, the term
EM in the cost function (Eqn. 4) is replaced by new EFi , that will be explained
below, with i = 1 . . . 7, for the set of 7 feature positions to be refined, weighted
with ηF :

E = ηI · EI + ηF ·
7∑

i=1

EFi(xFi , yFi) + ηP · EP (5)

The features are: the tip of the nose, the corners of the mouth, and the inner
and outer corners of the eyes. For feature point i, we know which vertex ki of
the model it corresponds to, and using perspective projection we get the current
position (xFi

, yFi
) in the image Imodel.

Once every 1000 iterations, the entire current fitting result Imodel is rendered,
and templates are cut out around the current feature positions (xFi

, yFi
). Tem-

plate sizes are pre-defined relative to the head size sH (distance between a vertex
on the top of the forehead and one on the bottom of the chin, in pixel units):
eyes: ( 1

9sH) × ( 2
9sH), nose: ( 1

18sH) × ( 1
18sH) and mouth: ( 2

9sH) × ( 1
9sH). We

chose these sizes to make sure that each template contained enough diagnostic
features, such as part of the eyebrows in the eye template.

The new EFi
in (5), based on TM, are

EFi
(xFi

, yFi
) = 1−CFi

(xFi
, yFi

). (6)

where CFi
is the normalized cross correlation [22], which we found to be more

reliable than alternative choices:

CF(x, y) =

P
(p,q)∈R

(I(x+ p, y + q) ·R(p, q)) −N · Ī(x, y) · R̄r P
(p,q)∈R

(I(x+ p, y + q))2 −N · (Ī(x, y))2 · σR

(7)

where I is the original image and Ī(x, y) its local mean value around the
current position (x, y) in a template-sized area, R is the current template (or
reference image) and R̄ its mean value (over all (p, q)), σR is the variance of the
template values and N is the number of template values (width ·height). Only Ī
has to be computed for every (x, y). The other three components (R̄, σR, N) can
be precomputed. Note that ∀(x, y) ∈ I : CF(x, y) ∈ [−1, 1], with 1 representing
a maximum match and −1 a maximum mismatch. For color images, CF(x, y) =
1
3 (CF,red(x, y) + CF,green(x, y) + CF,blue(x, y)).
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The weight ηF is constant and scales the sum of all EFi
to the same range

of values as the image difference EI .
Templates R and cross correlations CFi

are updated once every 1000 itera-
tions of the fitting algorithm. To reduce computation time, CFi

(x, y) for each
feature i is calculated only in a region of interest (ROI: 1

9sH × 1
9sH) around

the current position (xFi , yFi). Even in the first iteration, these positions can
be assumed to be approximately correct, and also the head size sH that defines
the (constant) template size will be in the right order of magnitude, due to the
vague initial feature coordinates.

In intermediate iterations, CFi
remain fixed, but the positions (xFi , yFi) for

looking up CFi
(xFi

, yFi
) will change. This reflects the fact that the locations of

feature points may change faster during the optimization than the appearances
of features do. Fig. 1 gives an overview of the algorithm.

Fig. 2 shows how the templates (here: outer corner of the left eye) change over
fitting iterations when fitting to different images (rows in Fig. 2). Over the first
six template-adaptions, not much change is observed. At the seventh template
in each row, the change is already visible at the eyebrow, after the eighth and
ninth adaption the whole templates changed significantly. The major change can
be observed at step eight and nine, because this is where fine adjustment starts:
The head model is broken down in different regions, and these are optimized
separately (see [2]).

Fig. 3 shows an example of how the cross correlation result, matching the left
corner of the left eye, changes over the fitting iterations. The detail belongs to the
result of the third line of Fig. 8. There, first the position of the corner of the eye
has been displaced to the right to evaluate robustness. As the fitting proceeds,
it moves to the left and upward until it reaches the correct position eventually.
The position of the ROI also shows where the feature has been positioned when
computing the cross correlation. The ROI position reveals the drift of the feature
to the correct position.

It can be seen that the cross correlation turns into a single, wide optimum
as the template adapts to the appearance in the image. Note that if the model
adapts perfectly to the feature in the input image, CFi

(x, y) will converge to the
autocorrelation function, and the width of maxima and minima will be deter-
mined by the frequency spectrum of the template.

5 Results

We tested our algorithm on 300 randomly chosen images from the FRGC data
base [23], using three images per person and a set of 50 women and 50 men.
The only constraint in random selection was that the person did not show an
extreme facial expression. Typical examples of the randomly chosen samples,
some of them in difficult imaging conditions (focus, illumination, expressions)
can be found in Fig. 4. The database contains front view images only. We show
results on non-frontal views later in this section.

For ground truth in every image, five feature positions (outer corners of
the eyes, nose and corners of the mouth) were labelled manually. To simulate
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Fig. 1. Self-adapting feature layers: Blue arrows show actions performed only ev-
ery 1000 iterations: Templates are cut out from the current fitting result. They are
compared to the original image I using normalized cross correlation at a certain ROI
and from these, the ’feature layers’ are generated. Red lines show actions performed
every iteration: Imodel is compared to I, and for each feature i the error value EFi is
taken from the corresponding ’feature layer’ at the current feature position (xFi , yFi).

scenarios with an unreliable initial feature detector, we perturbed the feature
positions randomly:

1. randomly select two (of the five) features to be perturbed
2. randomly select a displacement direction for each
3. displace feature positions by a fixed distance

In three different test conditions, we used distances of 5%, 12% and 25% of
the vertical distance between eyes and nose. This corresponds to distances of
0.2cm, 0.48cm and 1.0cm in reality on an average sized head. The perturbation
ranges are visualized as the radii of the circles in the upper row of Fig. 5. The
lower row shows a typical example for each test condition. By using displacement
distances relative to the eye-nose distance in the image, rather than fixed pixel
distances, we were able to use images at different resolutions.

To have an independent criterion for the quality of the reconstructions, we
evaluate recognition rates from model coefficients in an identification task. Given
the linear 3DMM coefficients for shape and texture of the entire face and the
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Fig. 2. Templates changing over fitting iterations. Each line is from fitting to one
input image. In the first two examples (upper row), convergence was correct, in the
last two (lower row), the corner of the eye moved to the eyebrow.

Fig. 3. Cross correlation results in the ROI, changing over fitting iterations. Dark
pixels indicate good matches. These results correspond to the templates in the first
line of Fig. 2).

facial regions (eyes, nose, mouth and surrounding area), which are concatenated
into coefficient vectors c, the algorithm finds the individual from the gallery set
with a minimum distance, measured in terms of a cosine criterion d = 〈c1,c2〉

‖c1‖·‖c2‖
(see [1, 3]). For each probe image, a comparison with the other two images of
that person and with all three images of all 99 other individuals is performed.

Recognition is tested with the standard 3DMM fitting algorithm ([1], see
Section 3) and with our new SAFL approach for the manually marked feature
positions and each perturbation range. The percentages of correct identification
can be found on the left side of Fig. 7.

Due to the difficult imaging conditions, the overall recognition rate is below
50%. In the unperturbed case, both the standard algorithm and the new self-
adapting feature layers (SAFL) deliver similar results, indicating that SAFL do
not downgrade the system when correct feature positions are given. However,
with perturbed features, the recognition rate for the standard algorithm rapidly
decreases as the displacements get larger. In contrast, SAFL identification rates
remain stable. This demonstrates that SAFL increases the robustness of the
fitting for face recognition.

We have also evaluated the distances between the ground truth feature po-
sitions and the optimized positions after fitting. Fig. 6 shows the distribution of
the average 2D distances of the five features in each test image: The vertical axis
is the absolute number of test images (out of a total of 300) where the average
feature distance is below the distance threshold indicated on the horizontal axis.

If we do not perturb the starting positions of features, most test images have
an average error in final feature positions of 5% to 10% of the vertical distance
between eyes and nose, which corresponds to approximately 2mm to 4mm. The
standard algorithm performs slightly better than SAFL because EM keeps the
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Fig. 4. Typical examples of images per person: Each line shows three pictures
of the same individual [23]. Here not the whole pictures, but only the facial regions
(scaled to the same size) are shown.

Fig. 5. Perturbation ranges and typical examples of perturbed positions: In
the upper row circles mark the perturbation ranges of the three different test conditions,
from left to right: 5%, 12% and 25%. In the lower row green crosses mark manually
labelled feature positions and red crosses mark perturbed positions.

features fixed to the ground truth positions during part of the optimization.
It should be noted that the ground truth positions may have some residual
uncertainty, because it is difficult to identify corresponding feature positions
(pixel in the image - vertex on the model) exactly by hand. This may explain
why the benefit of SAFL in this evaluation criterion becomes visible only on a
larger scale of feature distances, i.e. when larger perturbations are applied (Fig. 6,
second diagram). These results are consistent with the face identification rates
on the left of Fig. 7, where we found similar performance for unperturbed initial
features, but a significant improvement for perturbed features.

To demonstrates that SAFL is not restricted to frontal views we did some
additional tests on the FERET database. The setting was chosen like for the
FRGC data. In a rank 1 identification experiment (1 out of 194) we used ba
images as gallery and bb (rotated views with a mean rotation angle φ of 38.9◦,
cf. [1]) as query images also considering perturbation ranges from 0% to 25%.
The percentages of correct identification can be found on the right of Fig. 7.
Compared to [1] the recognition rates of both (standard and SAFL) are lower.
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Fig. 6. Movement of feature positions: Left diagram: The manually labelled fea-
ture positions (without perturbation) were used for initialization of the reconstruction.
Right diagram: 25% perturbation. x-axis: Average distance between the manually la-
belled positions and the resulting positions after reconstruction for a given test image.
y-axis: Cumulative error distribution (absolute number of images with distance below
threshold, total 300.) Black line: standard 3DMM fitting algorithm, red line: proposed
algorithm SAFL.

This is due to the fact that in [1] more than the five feature positions are used,
e.g. at the ear and at the contour, which are useful for non-frontal views. But
our goal here is to demonstrate the usefulness of the new algorithm compared
with the standard one.

To test the new algorithm in a real world scenario we chose the feature
detector of [3] to automatically detect the feature positions on the 300 faces
taken from the FRGC database. Performing a rank 1 identification experiment
again the standard algorithm delivers a recognition rate of 29.6̄% and the new
algorithm yields a recognition rate of 39.0%. This results are comparable to the
recognition rates of the former experiment with random perturbation of 12%.

To confirm our choice of making the features self-adapting and of using the
image layer approach rather than considering only the position of maximum
feature response, we evaluated some alternative versions of the algorithm:

a. Standard algorithm, but the initial (perturbed) feature positions (which con-
tribute to EM ) are replaced after iteration 1000 by the position of the max-
imum output of template matching (TM). The idea is that a single TM
early in the process would be enough to refine the perturbed feature posi-
tions. The template is created after a coarse estimation of pose, lighting and
appearance.

b. Use self-adapting templates that are adapted every 1000 iterations, but con-
sider only the maximum TM output rather than layers EFi

, and use it in
EM instead of the initial features (standard algorithm). This condition tests
whether the layer approach EFi

is superior to EM which just pulls features
to the positions of maximum TM output.

c. Compute the cross correlation results only once for each feature, and use
this to get EFi(xFi , yFi) for the rest of the reconstruction algorithm. This
condition verifies the benefit of adaptiveness in the SAFL algorithm.
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Fig. 7. Comparison of recognition rates: measured in terms of correct identifi-
cations (one out of n individuals). The left diagram is for frontal faces of the FRGC
database (n = 100) and the right diagram is for non-frontal faces using images from
the FERET database ba as gallery and bb as query images (n = 194). The accuracy in
the right plot is better than in the left plot because FERET is easier to classify (the
images are from a single session).

Table 1. Recognition rates: percentage of correct identifications for all algorithms
tested on all perturbation ranges.

perturbation in % 0 5 12 25

standard 44.6 41.0 31.0 12.3
a 25.0 25.3 25.0 19.6
b 14.0 14.3 11.3 11.3
c 42.0 40.6 39.0 33.0

SAFL 43.3 41.0 41.0 38.3

Table 1 shows the recognition rates of the standard algorithm, the proposed
SAFL and the additional tested versions a,b and c listed above. The results
of the versions (a) and (b) are much lower than all others, indicating that the
cost function EFi

performs better than searching for the maximum output of
TM only. The recognition rates of setting (c) come close to the ones of the
SAFL approach, but are still inferior, showing that self adaptation is useful.
We conclude that both main ideas proposed in this paper make a significant
contribution to the stability of 3DMM fitting in a recognition scenario with
partially unreliable initial features.

The computation times for the different approaches according to different
facial region sizes can be found in Tab. 2. When TM is used, computation times
depend critically on the size of the facial region. It would have been worth
considering to perform template matching at a lower image resolution.

Fig. 8 shows 4 reconstruction results of frontal views. For lack of space, we
show only one perturbation level per example in this figure in order to give an
idea of what the reconstructions look like but more results can be found in the
supplementary material. In the left column, the feature positions are marked on
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Table 2. Computation times: in seconds, measured on an IntelR CoreTM 2 Duo
CPU E8300 @ 2.83GHz (single threaded).

facial region std. a b c SAFL

5412px 64 92 103 146 160

10542px 67 120 232 331 456

the input images with colored crosses: green for manually labelled positions and
red for perturbed positions. The second column shows close-ups of the features
randomly chosen for perturbation. In the first row, the manually labelled feature
positions were used. Here the SAFL approach got into a local minimum, moving
the eyes to the eyebrow positions. In the second row, two randomly chosen
feature positions were perturbed 5%. Here the perturbation is quite small, but
SAFL outperforms the standard algorithm in reconstruction. In the third row,
two randomly chosen feature positions were perturbed 12%. Here it can be seen
how much the perturbed feature positions influence the standard algorithm.
The reconstruction using SAFL is plausible. In the fourth row, two randomly
chosen feature positions were perturbed 25%. We would like to add that both
algorithms may produce suboptimal results occasionally, and we selected four
typical examples here.

Results of non-frontal views are shown in Fig. 9. We show only this randomly
chosen examples with a perturbation range of 12% in this figure in order to give
an idea of what the reconstructions look like but more results can also be found
in the supplementary material. At the upper line the SAFL approach improved
the reconstruction. On the left side it is obvious but on the right side it can only
be seen at the forehead and at the chin. At the lower line the SAFL approach
does not really improve the reconstruction. On the left side the model fits better
to the image (it is rotated) but it is still too small and on the right side it fits
better at the forehead and at the ear but chin and nose are deformed.

6 Conclusion

We have presented a new approach for using feature detectors in 3DMM fit-
ting. The algorithm involves adaptive features, which is crucial to leverage the
advantages of 3DMMs, and it is based on a new type of cost function that
forms a tradeoff between feature similarity and some more global criteria such
as geometric configuration, correct reproduction of color values and high prior
probability.

The evaluation is based on a scenario where the 3DMM fitting is initialized
by a set of potentially unreliable feature detectors, and the algorithm iteratively
refines the feature positions. The results indicate that the proposed algorithm
improves recognition rates significantly. The second part of our evaluation is
focused on the contributions of different design options in our algorithm, and
it demonstrates that both the adaptiveness and the new type of cost function
increase the robustness.
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Fig. 8. Reconstruction examples: Each row shows 3DMM fitting for one test im-
age. In the examples in row 1, 2, 3, 4, we used 0%, 5%, 12% and 25% perturbation,
respectively, relative to eye-nose distance. From left to right: positions marked on the
input image, close-ups of the perturbed feature positions (green: manually labelled, red:
perturbed position used), reconstruction with the standard algorithm, reconstruction
with the new SAFL approach.
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