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Abstract
This paper presents a method for photo-realistic animation that can be applied to any face shown in a single image
or a video. The technique does not require example data of the person’s mouth movements, and the image to be
animated is not restricted in pose or illumination. Video reanimation allows for head rotations and speech in the
original sequence, but neither of these motions is required.
In order to animate novel faces, the system transfers mouth movements and expressions across individuals, based
on a common representation of different faces and facial expressions in a vector space of 3D shapes and textures.
This space is computed from 3D scans of neutral faces, and scans of facial expressions.
The 3D model’s versatility with respect to pose and illumination is conveyed to photo-realistic image and video
processing by a framework of analysis and synthesis algorithms: The system automatically estimates 3D shape and
all relevant rendering parameters, such as pose, from single images. In video, head pose and mouth movements are
tracked automatically. Reanimated with new mouth movements, the 3D face is rendered into the original images.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

In terms of photo-realism, the most advanced examples of
talking faces so far have been produced with image-based
methods 7, 12, 16, 11. Re-arranging frames in video sequences,
Video Rewrite 7 reanimates existing footage to make a per-
son utter new text. To reduce the number of frames to
be stored, other methods morph between keyframes 12 of
visemes, which are the visual analogue of phonemes. A so-
phisticated statistical analysis of video footage has yielded
other fundamental mouth shapes that can be encoded as
a vector space of warp-fields and textures 11. With itera-
tively optimized trajectories, this has produced highly real-
istic speech.

The realism of 2D methods, however, comes at a price:
For the person to be animated, images of all basic mouth
shapes have to be available, since their appearance is not in-
ferred from other individuals. The output is restricted in pose
and other imaging conditions to what is found in the original
video: Only small rotations can be covered so far 7, 16, as-
suming the mouth region to be flat. The gradual occlusions
of the teeth by the lips pose additional difficulties to 2D mor-
phing.

In 3D animation, rotations and occlusions are straightfor-
ward to achieve. One class of methods involves manually
designed deformation patterns of a 3D mesh 25, 26, 29, 2; Free
Form Deformations have been used to animate a person’s
face, given a front and a side view 15, or multiple stereo-pairs
or video frames 13. An alternative approach is to simulate
the physics of surface deformations caused by muscle forces
33, 31, 23, 20. Given a neutral 3D range scan 31, 23, 20 or CT-scan
22, the physical model can predict that person’s facial ex-
pressions, and animate the face. In all these techniques, it
may be difficult to define deformation patterns, muscles and
tissue parameters that produce precisely the wrinkles found
on faces. In contrast, example-based methods try to learn de-
formations from real faces.

A number of example-based 3D methods analyze video
data from multiple viewpoints to estimate 3D shape of fun-
damental expressions 18, 27, 28, 30 or to learn the dynamics
of speech 10, 6. Other methods have used either static 3D
scans of closed-mouth expressions 32, 5, or time-sequences
of structured-light scans 21. Unlike performance-driven ani-
mation, all these techniques produce novel sequences, rather
than reproducing motion in 3D. Some systems can also
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Figure 1: In the vector space of faces, facial expressions are
transferred by computing the difference between two scans
of the same person (top row), and adding this to a neutral
3D face. To modify Leonardo’s Mona Lisa (second row), we
reconstruct her 3D face (third row), add the expression, and
render the new surface into the painting (second row, right).

transfer motion to a novel, neutral face 18, 10, 32, 5, 6, 30, while
others transfer high-level parameters, but not the appearance
of expressions 27, 28. Speech and expression can be applied
to single images 32, 5, 6, 30 or video 28.

The main contribution of this paper is a framework that
combines the strengths of previous animation techniques:
the photo-realistic quality of 2D animation, the versatility
of a 3D model, the capacity to generate facial expressions
of individuals from their neutral faces, and the automated
learning technique of example-based methods.

What makes our framework stand out from existing tech-
nologies are the low requirements with respect to the input
data of the person to be animated: This may be a single im-
age or a video sequence, taken at a wide range of illumina-
tion conditions, poses, and mouth shapes. Unlike other meth-
ods, we compensate for rotation and speech in video, yet do
not need them to animate a given face. This flexibility is cru-
cial for a wide range of applications, such as movie dubbing.

Our method is based on a common vector space of 3D
shapes and textures computed from a dataset of 35 laser
scans of facial expressions, and neutral faces of 200 per-
sons. In this vector space, expressions can be changed con-
tinuously along any trajectory in face space, and transferred
across individuals. An estimate of 3D shape from a single
image or a video frame is obtained by a fitting algorithm
that minimizes the image difference between the synthetic
image, and the input image. The algorithm is more general
and more robust than previous systems 5, and it can also be
applied to non-neutral faces. In that case, we can estimate
the neutral shape of the face. For reanimation, we apply new
facial expressions to the 3D face, and render it back into the
original image or video.

The new vector space representation of open-mouth scans
is an extension of previous work on closed-mouth faces and
facial expressions 32, 5. For open mouths, constructing a vec-
tor space is significantly more difficult, and has called for
additional techniques. Recently, other methods have formed
vector spaces of facial expressions from snapshots of dy-
namic sequences 30, 21, 28. While some of them30, 21 are based
on 3D coordinates of sparse feature points (64 and 124, re-
spectively), our face vectors from static scans include all ver-
tices of a high–resolution mesh that captures wrinkles and
other subtle, yet highly expressive details.

To reanimate faces in video, we are tracking head rota-
tion in the presence of speech and facial expressions. Un-
like methods based on facial features18, 31, 15 or constrained
optic flow 8, we minimize image difference in an iterative
analysis-by-synthesis loop 5, 30, 14, 28.

In the following section, we introduce the vector represen-
tation for faces with open mouths, and a method to construct
this vector space. In Section 3, we describe how the model
can be applied to animate faces in single images, and show a
set of results. Section 4 presents additional methods required
for video reanimation.

2. A Morphable Model of Mouth Configurations

The Morphable Model of 3D faces 5 is a vector space of
3D shapes and colors (reflectances). The vectors are defined
such that any linear combination of examples

S =
m

∑
i=1

aiSi, T =
m

∑
i=1

biTi. (1)

is a realistic face, given that S, T are within a few standard
deviations from their averages. In this paper, each vector Si
is the 3D shape of a human face, stored in terms of x,y,z-
coordinates of all vertices k ∈ {1, . . . ,n} of a high-resolution
3D mesh:

Si = (x1,y1,z1,x2, . . . ,xn,yn,zn)
T
. (2)

In the same way, we form texture vectors from the r,g,b sur-
face colors of all vertices:

Ti = (R1,G1,B1,R2, . . . ,Rn,Gn,Bn)
T
. (3)
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Figure 2: Examples from the dataset of 35 static 3D laser
scans forming the vector space of mouth shapes and facial
expressions. 17 scans show different visemes, others show
the mouth opening gradually.

Face space provides a representation not only for different
persons’ faces 5, but also for changes within one face, as the
person speaks or acts. In this paper, we construct a vector
space of facial movements and facial expressions recorded
from one person, and combine it with the vector dimensions
of personality.

For animation, smooth motions are generated by any con-
tinuous trajectory in ai,bi ∈ IR. This property, however, does
not prevent structures, such as eyebrows, from disappearing
and reappearing somewhere else on the surface during tran-
sitions. To avoid such artefacts, vector components xk,yk,zk
have to represent the same structure, such as the corner of
an eyebrow, in all vectors Si. We describe an algorithm to
establish this point–to–point correspondence in Section 2.3.

In our representation, any snapshot of a person’s face can
be mapped to a vector S, T. Even though faces are controlled
by a relatively small number of parameters, we cannot ex-
pect the full range of expressions to lie within the span of a
few extreme shape vectors only, due to the non-linear physi-
cal properties that are involved in facial expressions, causing
effects such as wrinkles Therefore, we increase the number
of dimensions by including intermediate expressions as ad-
ditional basis vectors.

2.1. Database of Expressions and Mouth Shapes

In order to capture the degrees of freedom of mouth move-
ments for speech synthesis, we recorded a set of 35 static
laser scans (Figures 2, 3) of one person. The dataset contains
the visemes that will be used as morph-targets in animation,
and additional scans that vary systematically in the verti-
cal opening of the mouth, and the width of the mouth. We
recorded two additional scans (Figure 3) that display most
of the upper and lower jaw teeth. Even though markers are
dispensable for our algorithm, we painted white and black
spots on the skin to measure tangent motion along the sur-

Figure 3: The reference shape, consisting of the face and
lips (left, top), the inner part of the mouth (left, center), and
the teeth (bottom). Upper and lower jaw teeth were taken
from two different scans (right).

face (cheeks), and achieve more precise 3D alignment (fore-
head). Red lipstick increased the contrast at the edge of the
lips, and a bathing cap covered the hair.

The 3D scans were recorded with a CyberwareT M 3030PS
laser scanner. In 512 steps in height h and azimuth φ, the
scanner records radius r(h,φ) and coloured texture R(h,φ),
G(h,φ), B(h,φ).

2.2. Reference Surface

The morphable model is based on a reference surface mesh.
From this surface, point-to-point correspondence to all other
scans is established. For the selection of the reference shape,
two issues have to be considered: (1) To be able to establish
correspondence, the reference surface has to be as similar to
the other scans as possible. (2) Only the surface regions that
are part of the reference face can be represented in novel lin-
ear combinations. The reference mesh has to contain what-
ever portion of the teeth is visible in speech and facial ex-
pressions.

To fulfill the first requirement, we selected an intermedi-
ate mouth configuration (Figure 2) as a reference. Much of
the teeth is occluded in this shape, so we added teeth to the
referenced mesh in a later processing step (Section 2.4). The
combined reference mesh (Figure 3) has 90831 vertices at a
spacing of about 0.6 mm.

2.3. Correspondence between 3D Scans

The crucial step in forming a morphable model from a set of
surface scans is to identify corresponding points on the ex-
ample scans for all vertices of the reference mesh. To estab-
lish dense point-to-point correspondence on the entire sur-
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Figure 4: Top: Texture of the reference scan. Bottom: Tex-
tures of mouth configurations; Occlusions of teeth, tongue
and pharynx make it difficult to identify corresponding
points.

face of the face, we compute the best match for all struc-
tures, rather than using a sparse set of features, or markers.
Our algorithm uses both shape and texture. We do not match
the teeth, since they are connected to the skull and to the
lower jaw, so their motion can be simulated directly (Section
2.4). Still, the fact that teeth, tongue and pharynx are visible
in some scans and occluded in others (Figure 4) makes the
computation of correspondence a more challenging task.

Unlike the fully automated procedure for neutral faces 5,
we have partitioned the scans into 3 batches, depending on
how similar they are to the reference. We then perform the
following bootstrapping method with minor manual interac-
tion:

The 11 scans of the first batch are reliably processed by
an automated algorithm based on optical flow 1: When ap-
plied to grey-level images I(x,y), I′(x′,y′), optical flow algo-
rithms compute correspondences (x,y) 7→ (x′,y′). We use a
generalization5 of this to match laser-scans r(h,φ), R(h,φ),
G(h,φ), B(h,φ) (Section 2.1) with the reference scan; The
algorithm finds a mapping (h,φ) 7→ (h′,φ′) that minimizes
the sum of square differences of radii and colors

(r(h,φ)− r′(h′,φ′))2 +(R(h,φ)−R′(h′,φ′))2 +

(G(h,φ)−G′(h′,φ′))2 +(B(h,φ)−B′(h′,φ′))2 (4)

in each point (h,φ). Based on this mapping, the scans are
converted into shape vectors Si (Equation 2).

Principal Component Analysis (PCA9) provides an or-
thogonal basis ui adapted to the statistics of the examples
Si, with basis vectors ordered according to the variance in

the dataset around the arithmetic mean u. For the next step,
it is important that linear combinations S = u + ∑γi ·ui can
produce shapes beyond the convex hull of examples, with
mouths more open or closed than those in batch 1.

For each scan in batch 2, we approximately reproduce
mouth shape by adjusting the coefficients γi in an interactive
tool. Correspondence from these closest linear combinations
to the original scans of batch 2 is then computed automati-
cally by the optic-flow-based algorithm, and batch 2 is added
to the vector space. Another iteration of this procedure adds
batch 3 to the space. In the last bootstrapping iteration, we
include teeth to the vector space representation, as described
in the following section, to make the computation of optical
flow easier (see Figure 4).

2.4. Teeth

In the scans shown in Figure 2, part of the teeth is occluded
by the lips. We therefore recorded two scans where most of
the teeth are visible (Figure 3), and manually extracted the
polygons of the teeth, using an interactive tool. These poly-
gons were then added to the reference surface (Figure 3).

The motion of teeth is easy to simulate: The upper jaw
teeth are connected to the upper part of the head, and the
lower jaw teeth are connected to the tip of the chin. We ex-
ploit these facts in the following way: We align all heads in
space using the method of 3D-3D Absolute Orientation 17,
based on sets of corresponding points on the upper part of
the face, which were located in Section 2.3. Keeping the up-
per jaw teeth always at the position they have in the scan in
Figure 3 (top, right) will then produce correct results for all
linear combinations of the example scans.

The lower teeth’s motion due to small rotations of the jaw
can be approximated by a linear 3D translation: In the orig-
inal scan (Figure 3, bottom, right), we measure the position
of the teeth relative to a point on the tip of the chin. We lo-
cate this point in all other scans using correspondence, and
shift the teeth to keep their relative position unchanged.

Finally, we add some polygons for the inner part of the
mouth extending from the lips back to the pharynx, and
intersecting some polygons of the teeth. In each scan, the
frontal edges of this surface are connected to the lips.

2.5. Combination of Personality and Expression

Recorded from a single person, the expressions and mouth
movements can be transferred to another person’s neutral
face by simple vector space operations (Figure 1). This pro-
cedure assumes that the 3D displacements of surface points
are the same for all individuals: We ignore the slight varia-
tions across individuals that depend on the size and shape of
faces, characteristic patterns of muscle activation, and me-
chanical properties of skin and tissue. Therefore, our predic-
tions only approximate the true expressions of novel faces.

c© The Eurographics Association and Blackwell Publishers 2003.
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To be able to transfer facial expressions, we combine the
expression vectors with the face vectors of 200 individual
neutral faces5. The neutral face vectors have to be converted,
since they were based on a different, closed-mouth refer-
ence surface. Using the correspondence algorithm (Section
2.3), we match this reference scan of personality space to the
closed mouth vector in expression space (Figure 2), to find
a point-to-point mapping between the two representations.
With this mapping, we can automatically resample all indi-
viduals’ shape and texture data to obtain S and T in the new
format.

Information about shapes and positions of the 200 per-
sons’ teeth is unavailable, so we insert the same set of teeth
(Section 2.4) behind everyone’s closed lips. They are located
at a fixed position relative to the center of mass of three
points (the corners of the mouth and the center of the lipline)
which are located automatically, based on correspondence.

Within the common vector space, Principal Component
Analysis could be computed on the combined set of p per-
sons SP

i and m expressions SE
i simultaneously. However, the

relative weight of variances caused by personality and mouth
movements, respectively, would depend on the numbers p
and m, and this would affect the result of PCA considerably.
We therefore keep both sets separate, which yields an aver-
age shape s and p−1 eigenvectors si for personality, and an
average shape u and m− 1 eigenvectors ui for expressions.
We use texture eigenvectors ti from the personality set only.

We investigated the relation between the subspaces gener-
ated by these two sets, by examining their variabilities rela-
tive to the averages. Given the sets E = {SE

i −u|i = 1 . . .m}
and P = {SP

i − s|i = 1 . . . p}, we computed the angle4 be-
tween the subspaces generated by E and P . The resulting an-
gle of 74◦ (and of 45◦ for a control set of identity vectors),
shows that the two subspaces are not orthogonal. This char-
acteristic is also reflected by the ratio between the variances
(computed as the sum of the eigenvalues of the covariance
matrix) of R and E , with

R = {(SE
i −u)−

p−1

∑
j=1

(SE
i −u) · s j

‖s j‖2 s j|i = 1 . . .m}

being the sets of residuals of the projection of the (SE
i −u)

on P . For the expression set the ratio is 0.46, compared with
0.15 for the control set.

3. Animating Faces in Still Images

In many applications, it is not sufficient to be able to ani-
mate a given 3D mesh: First, we may not have a 3D scan of
the face, but only one or several 2D images. Second, photo-
realistic animation often involves re-inserting the moving
face into the original scene. By fitting the Morphable Model
of 3D faces to the images, we address both aspects of this
problem: From a single image of a person, we estimate a tex-

Features Start Features only Illumination

Result Shape Textured Textured

Figure 5: Recovering a 3D face from E. Hopper’s self-
portrait: Initialized with manually labeled features (top, left)
and starting from a front view of the average face, the algo-
rithm automatically optimizes shape and texture of the mor-
phable model, and estimates pose, illumination, and other
parameters. The second row shows the result without (left)
and with (right) texture extraction.

tured 3D surface, along with all relevant parameters required
to render the modified face back into the original image.

3.1. 3D Reconstruction of Non-Neutral Faces

Based on the combined vector spaces of personality and
mouth movements, we estimate 3D shape from images of
non-neutral faces, extending an algorithm for neutral faces5.
In an analysis-by-synthesis loop, the algorithm computes the
optimal linear combination of principal components for in-
dividual shape si, texture ti, and expression ui:

S = s+
p−1

∑
i=1

αi · si +
m−1

∑
i=1

γi ·ui, T = t+
p−1

∑
i=1

βi · ti (5)

The estimate is based on an iterative minimization of the
difference EI between the synthetic image (Ir, Ig, Ib)model of
the 3D face, and the input image (Ir, Ig, Ib)input :

EI = ∑
x

∑
y

∑
c∈{r,g,b}

(Ic,input(x,y)− Ic,model(x,y))
2
. (6)

If multiple images are available, EI is the sum of all image
differences. Minimization is achieved by stochastic gradient
descent, evaluating only a random subset of pixels at each
iteration.

Along with αi, βi, γi, the system automatically optimizes
all relevant imaging parameters: Three angles for pose, 3D
position, focal length of the camera, red, green, and blue in-
tensities of ambient and parallel light for one light source,
the direction of parallel light, color contrast, and gains and
offsets of the three color channels, which account for the
tone and contrast. Unlike previous algorithms 5 that did not
optimize focal length and illumination direction, and in-
volved manual pre-alignment of the average face for initial-
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Figure 6: Reconstructed from the original images (left column), 3D shape can be modified automatically to form different
mouth configurations. The paintings are Vermeer’s “Girl with a Pearl Earring”, Tischbein’s Goethe, Raphael’s St. Catherine,
and Edward Hopper’s self-portrait. The bottom left image is a digital photograph. The wrinkles are not caused by texture, but
entirely due to illuminated surface deformations. In the bottom-right image, they are emphasized by more directed illumination.
Teeth are transferred from 3D scans (Figure 3). Note the open mouth in Vermeer’s painting, closed by our algorithm (top row,
second image).
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Original Optimal linear combination

Synthetic neutral Synthetic neutral

Figure 7: Top row: 3D reconstruction from an open-mouth
image. Among the 11 feature points provided for initializa-
tion, only one was in the mouth region (on the upper lip).
Therefore, the algorithm must have relied on generic image
information to estimate mouth shape. The teeth are not in-
volved in matching currently. Bottom row: Setting the mouth
shape coefficients γi = 0 generates a neutralized face (the
true neutral face is shown in Figure 6.)

ization, the new system always starts with a frontal view at
standard size, position, and illumination.

For initialization, the user selects between 7 and 20 fea-
ture points in the image, such as the corners of the eyes, and
clicks on the corresponding vertices of the 3D mesh. Feature
points may also be selected along occluding contours, such
as the cheek (Figure 5). For these, the algorithm finds tem-
porary correspondences that change during optimization as
the face rotates and deforms: It assigns the point in the im-
age to the closest vertex among those with a surface normal
that is orthogonal to the line of sight.

The image coordinates (qx, j,qy, j) of feature points j
contribute to the cost function in the following way: Let
(px,k j , py,k j ) be the image positions of the corresponding ver-
tices k j predicted by the model at the current iteration, and

EF = ∑
j
(qx, j − px,k j )

2 +(qy, j − py,k j )
2
. (7)

The system optimizes a weighted sum of EF , EI , and a reg-
ularization term

EP = ∑
i

α2
i

σ2
S,i

+∑
i

β2
i

σ2
T,i

+∑
i

γ2
i

σ2
M,i

+∑
i

(ρi −ρi)
2

σ2
R,i

. (8)

that penalizes solutions with low prior probability, based on
the standard derivations σ of individual shape, texture, and
mouth shape estimated by PCA. ρi denotes the rendering pa-
rameters, ρi their starting values, and σR,i are ad-hoc esti-
mates of their standard deviations. The weight of EI is set to
zero in the first iterations, and increased subsequently, while
the weight of EF is decreased and vanishes at the end. Fig-
ure 5 shows intermediate states of the fitting procedure. Fit-
ting 99 principal components for individual shape and tex-
ture and 10 components for expressions takes 5 minutes on
a 2GHz Pentium 4 processor.

After optimization, the linear combination (5) provides
estimated albedoes for the entire surface. To capture details
such as scars or the strokes of the painter’s brush, we per-
form an illumination-corrected texture extraction 5 on all
texture elements visible in the image: Inverting the effect
of the estimated illumination, the albedoes of each point on
the 3D surface are computed from the pixel values in the
image. Weighted by the angle between the surface normal
and the viewing direction, these values replace the previous
estimate. If several images are available, contributions are
automatically pasted into one texture.

Figure 6 shows novel mouth shapes and expressions gen-
erated automatically from images and a few feature point
coordinates. If the face is not neutral in the input image
(first row), our algorithm automatically estimates its neutral
shape.

3.2. Neutralization of Faces

The mouth in the reconstructed face can be closed, and a
neutral expression can be enforced, by setting the coeffi-
cients γi = 0 in Equation 5 after the fitting process (Figure
7). The 3D face is then a linear combination of neutral faces
only. In general, removing facial expressions in an image is
more difficult than adding new expressions, as it is necessary
to be able to reproduce the wrinkles and their shading very
precisely. Residual differences between the original and the
synthesized image will be falsely attributed to texture in the
texture extraction algorithm. Therefore, our algorithm does
not yet remove strong or unusual wrinkles completely.

3.3. Background Continuation in Still Images

Near the contour of a face, regions of the background that are
occluded in the original image may be revealed as the mouth
moves. We therefore replace part of the face in the original
image, continuing across the facial contour all structures ad-
jacent to the face. The animated 3D face is then rendered
in front of that modified background. The optimal strategy

c© The Eurographics Association and Blackwell Publishers 2003.



Blanz et al / Reanimating Faces in Images and Video

Figure 8: Based on a segmentation into face and non-face
regions (left) provided by the fitting algorithm, the back-
ground texture is reflected beyond the contour (center) to
avoid artefacts in animation (see Section 3.3).

for background continuation depends on the background’s
structure. In our examples, it is important to retain the over-
all structure of texture of the background, which may for
example be a strand of hair (Figure 8). We therefore cannot
use Image Inpainting algorithms3. Pure texture completion,
on the other hand, would require a uniform texture.

For background continuation, our system can rely on a
segmentation into face area and background (Figure 8, left)
from fitting the morphable model. For a stripe along the con-
tour just outside of the face region, our algorithm reflects all
pixel values to the inside, using a smooth warp field. This
method retains texture, while keeping discontinuities low.
The width of the stripe is calculated from the camera pa-
rameters and corresponds to 15mm in the 3D scene.

To compute the warp field, we use an iterative propagation
algorithm to calculate the distance d(x,y) from the boundary
for all pixels (x,y) within a stripe along the contour (Fig. 8,
right). Then, the normalized gradient of the distance map

ĝ =
g

‖g‖
, g = (

∂d
∂x

,

∂d
∂y

)T (9)

defines a warp field that reflects points across the edge:

(∆x(x,y),∆y(x,y)) = −2d(x,y) · (gx(x,y),gy(x,y)).

4. Animating Moving Faces in Video

One of the main benefits of the 3D model as opposed to
example-based methods in 2D is the versatility with respect
to changes in head pose and illumination. These changes nat-
urally occur in video sequences. In this section, we address
the problem of making a person in a given video sequence
say a novel text, regardless of what he or she said in the orig-
inal footage, and retaining the original head movements.

Reanimating video involves the following steps:

1. Recover a textured 3D model from original video frames
(Section 3.) If the video contains no large in-depth rota-
tions, it is sufficient to build the face from the first frame
only. Otherwise, precision of 3D shape can be increased
and texture details from all sides can be included by fit-

ting the model to two or three frames simultaneously.
2. Track 3D head motion (Section 4.1).
3. Generate a trajectory in the coefficients of mouth con-

figurations from audio or text, for example by simple
keyframe interpolation.

4. Add the mouth configuration vector to the neutral 3D
model at each frame.

5. Render the modified shape on top of the original video
frame, using the pose and illumination parameters recov-
ered by the tracking algorithm.

In the reanimated video, part of the background may be
revealed that was occluded in the original sequence. We can
identify those pixels by comparing the z-buffer values from
the reanimated 3D face with those from the tracked face.
Unlike still images, the required background region may be
visible in previous or subsequent video frames: If the de-
sired pixel is found within 10 frames in either direction, its
color value is copied to the current frame. Otherwise, the
algorithm uses the method described in Section 3.3.

Figure 9 shows 4 frames from a video recorded at 30fps
with a web-cam (640x480 pixels). The video includes large
rotations, a non-uniform background, and speech. For 3D
shape estimation, we used frame 0, 44, and 66 (out of 150),
showing the front, the left and the right side of the face. We
labeled 11, 15, and 17 feature points, respectively. No 3D
scan of the person was involved in any processing step.

4.1. Tracking

The rigid motion and mouth movements in the input video
can be tracked with a method similar to the 3D reconstruc-
tion algorithm described in Section 3.1: The algorithm fits
the morphable face model to consecutive frames by mini-
mizing image difference EI (Equation 6) and a regularization
term EP (8) 5, 30, 28. In each fitting process, the starting val-
ues, and the minimum of EP, are set to the previous frame’s
result, respectively. Keeping the person’s individual shape
and texture fixed, we only optimize for rigid transformation
and mouth movements (coefficients γi of the 4 most rele-
vant principal components, Equation 5). The feature point
method that was presented in Section 3.1 is not involved
in this process. Since all rendering parameters are estimated
from the first frame, no calibration is required. Reliability of
the algorithm has been increased significantly by a coarse-
to-fine strategy that starts with fitting a down-sampled ver-
sion of the frame, and then proceeds to full resolution. Com-
putation time is 16s per frame on a 2GHz Pentium 4.

4.2. Speech Synthesis

In a set of demo videos, we show visual speech synthesis
from audio signals and text, reanimating faces in a digital
photograph, in paintings, and in a video (Figure 9). Pho-
netic alignment of speech and text has been provided by the
CMU-SPHINX system19, producing a temporal sequence of
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Frame 38 Frame 58 Frame 89 Frame 133

Figure 9: From each original frame of a video (top row), an estimate of pose and mouth shape was calculated (second row).
3D shape and texture were reconstructed from 3 selected frames. In the third row, the face with new mouth shapes is rendered
into the original image.

phonemes that can be mapped to the visemes of our dataset.
Based on this sequence, we perform keyframe interpolation
with cosine-shaped acceleration and deceleration. Temporal
super-sampling by a factor of 4 is used to produce motion-
blur.

5. Conclusions

We have presented a unified method to learn a model of fa-
cial expressions and individual neutral faces from 3D scans,
and we described a set of algorithms that apply this infor-
mation to animate a given face in an image or a video. The
system is suited for a wide range of applications, due to the
low requirements to the input data.

Our framework is open for various future developments:
The variation in the expressions of different persons can be
investigated in a database of examples. To compensate dif-
ferences in head shape and size, we could include meth-
ods such as Expression Cloning 24, where the direction and
length of shape deformations are adapted to the local ge-
ometry at each vertex. It is straightforward to include addi-
tional expressions recorded from a trained expert in order to
cover the entire expressiveness of human faces. Our current
database is focused on mouth movements, which seem to be
the most challenging problem in facial animation.

As real-time 3D scanning devices are becoming more and
more available, 3D snapshots and time-sequences can re-
place the static scans forming our vector space. With these

data, we can use learning techniques to study the dynamics
of speech and expressions, and to include coarticulation ef-
fects 11. Since we model speech as a trajectory in a vector
space of mouth shapes, more sophisticated dynamic patterns
can be implemented easily. Finally, we plan to investigate
the non-linear structure of the manifold of faces within our
morphable face model by higher-order statistics.
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