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ABSTRACT
This paper presents two learning based algorithms that are
designed for the purpose of extracting and processing suit-
able information in images for the visually impaired. Both
algorithms are developed to be used within a specific mod-
ular sonification system. This system is designed to allow
visually impaired people to explore images, actively on a
touch screen, and to receive an auditory response about the
image content at any current finger position. The first algo-
rithm presented in this paper therefore addresses the prob-
lem of labeling regions within images, incorporating spatial
dependencies. The second algorithm strives to alleviate the
rejection of false object detections before sonification. This
is crucial to avoid confusion on the side of the blind user,
who can not check for a correct image labeling or object de-
tection visually. Due to the modular design principle of the
modular sonification system, both algorithms can be incor-
porated easily and efficiently .

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing, software psychology

General Terms
Human Factors, Algorithms, Design

Keywords
Visually Impaired, Computer Vision, Object Recognition,
Labeling, Graphical Models, Dual Support Vector Fields

1. INTRODUCTION
In recent years there have been several attempts to aug-

ment the sensoric capabilities of visually impaired people,
conveying information of the surrounding world for various
purposes. Modalities used range from acoustical approaches,
called “Auditory Displays” or “Sonification” [16] to haptic
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devices. Developed frameworks strive, e.g., to help blind
people navigate through environments ([35]; [3]; [31]; [25]),
or convey information contained in images ([36]; [33]; [1]),
just to name a few. Recently, Banf and Blanz [2] presented
an interactive image sonification system as a special case of a
more general “modular computer vision sonification model”,
defined in [1]. This model proposes a direct exploration
paradigm in the domain of image sonification. Very much
like a blind person who explores a Braille text or a bas-relief
image haptically with the tip of her finger, users touch the
image (on a touch screen or touch pad) and experience the
local properties of the image as auditory response. Unlike
previous work on explorative image sonification [1], the focus
in [2] is to leverage Computer Vision and Machine Learn-
ing algorithms and to derive and sonify image information
on many levels, ranging from low-level color information to
high-level object recognition. Still, the results of these al-
gorithms remain tied to the image pixel where the feature
occurs, so the task of analyzing and understanding images
is still up to the user, which is why they call this approach
“auditory image understanding”. The system is designed to
allow visually impaired people to analyze images which they
find on the internet or personal photos from their friends.
Thus, it extracts and sonifies specifically that sort of infor-
mation, which is commonly present in these images. This in-
formation might include, e.g., landscapes, man made struc-
tures, animals, people, cars or every day objects.
In this paper we propose two algorithms, especially designed
to be incorporated within the system described in [2], for the
purpose of enhancing information processing in image soni-
fication for the visually impaired. Our contributions in this
paper can be formulated as:
• A novel type of discriminative graphical model, called

Dual Support Vector Field for man made structure
detection or other labeling problems that deal with
spatial dependencies.
• A novel feature set for man made structure detection

that goes beyond low level features.
• An algorithm (and feaure set) to verify true or discard

false object detections before sonification to avoid con-
fusion on the side of the blind user, who can not check
for a correct detection visually.
• Due to the modular design principle of the system in

[2], both algorithms can efficiently be incorporated into
its computation module, as illustrated in figure 1.
• Due to their design, both proposed algorithms can be

also employed in other applications than “auditory im-
age understanding”, e.g., for fully-automated computer
vision systems.



Figure 1: Illustration of the processing pipeline from
image pre-processing to sonification as described in
[2]. Our proposed algorithms can be efficiently in-
corporated in the computation module (red frames)

2. MAN MADE STRUCTURE DETECTION
IN NATURAL IMAGES

Image understanding is a task of primary importance for
a wide range of practical applications and has been topic of
considerable research in Computer Vision. One important
step towards understanding an image could be to perform
a labeling of every pixel in the image with the category of
the object it belongs to. This “full-scene labeling” has been
addressed with a variety of methods in recent years, most of
which rely on the usage Graphical Models, such as Markov
or Conditional Random Fields to account for context and
ensure the consistency of the labeling ([12]; [30];). One chal-
lenge of scene labeling is that it combines the traditional
problems of detection, segmentation, and multi-label recog-
nition in a single process. The incorporation of multiple
classes into the scene labeling process favors the occurrence
of miss-classifications. Interestingly, although object class
recognition fails the segmentation might still be accurate
[30]. However, in the context of full-scene labeling for the
visually impaired, it is crucial that no not-present classes are
introduced during recognition. Furthermore, the selection of
classes to detect might be challenging, if no prior knowledge
about the images to be explored, exist. Banf and Blanz [2]
separate the process of image labeling and object detection.
For image labeling, they choose a more general binary classi-
fication approach, into man made and natural regions, that
can be employed on any image, without knowing its content
and without the risk of introducing wrong classes ([19]; [18];
[37], [17]). In this approach, images are subdivided into rect-
angular patches and the classification of an image consists
of determining the correct labels of each patch in an image.
This procedure, therefore, does not represent a pixel-exact
labeling as it “quantizes” the image and its labeling, which
in general might be undesirable. However, in the context
of providing information to visually impaired, the continu-
ous range visual data clearly demands to much of them and
quantizations have to be applied within several steps of the
process. Furthermore, the loss in continuity is compensated
by an increase in robustness and generalizability. In this pa-
per we present a novel discriminative graphical model, called
Dual Support Vector Fields and an advanced feature set
as an alternative to the approach by Kumar [17].

2.1 Auditory Scene Labeling
Interestingly, in [2], the user is “incorporated ” in the im-

age understanding process. Although classification is only

Figure 2: An example of user based scene under-
standing. Left: Original image from the test set in
[2]. Right: Regions “labeled” due to human scene
understanding as given in [2]

binary (i.e., natural vs. man made), during exploration, the
user can utilize detected man made structures or specific
natural regions as reference points to classify other natu-
ral regions by their individual location, color and texture.
Figure 2 illustrates graphically, how congenital blind partic-
ipants within the user studies in [2] employ that strategy
successfully to interpret and understand a scene. Regions
have been labeled according to the verbal scene interpreta-
tion given below:
The lower part of the image from left to right is smooth
green, such as a lawn. Then there is a deep blue stripe which
is supposedly some sort of water, such as a river. Above the
river is a very flat band of buildings, followed by some green
natural section. The top region is blue, presumably sky. (by
an adult congenital blind participant)

2.2 Modeling Spatial Dependencies
The general representation of an image as a Conditional

Random Field (CRF) [20] will follow the notation of Ku-
mar in [17]. Thus, images are subdivided into rectangular
patches, called “sites” of 16×16 pixels each, and the classifi-
cation of an image consists of determining the correct labels
of each site si. When modeling an image using Conditional
Random Fields, the set of image sites corresponds to the set
of vertices within the graphical model. Accordingly, edges
correspond to the connections between neighboring sites. In
their CRF model for images, Kumar uses the Hammersley-
Clifford theorem [20] and the assumption that only pairwise
clique potentials are non-zero, i.e., only immediate neigh-
bors interact [17]. From this they obtain a joint distribution
over the labels given observations y defined by:

p(x|y) =
1

Z
exp

∑
i∈S

A(xi,y) +
∑
i∈S

∑
j∈Ni

I(xi, xj ,y)

 (1)

,with Z denoting a normalizing factor referred to as the par-
tition function, S being the set of sites si and Ni being the
set of neighbors of si. xi ∈ 1, 1, indicating a site si to be
either natural or man-made. Kumar refers to the unary po-
tential A(xi,y) and the pairwise potential I(xi, xj ,y) as the
Association and Interaction potentials, respectively.
The association potential, A(xi,y), can be regarded as a
measure of how likely some image site si will take label xi
given a series of features y, computed at that particular site
and ignoring the effects of other sites within the image. The
interaction potential, on the other hand, can be seen as a
measure of how the labels at neighboring sites si and sj
should interact given the observed image y.
Leaving out the interaction term (I(xi, xj ,y) = 0) reduces
the model to the Logistic Classifier of an image, which



does not incorporate any interaction between neighboring
image sites. Then, A(xi,y) is modeled using a local dis-
criminative model that outputs the association of the site si
with class xi as A(xi,y) = log p(xi|yi). Thereby p(xi|yi))
is the local class conditional at site si. This form allows
one to use an arbitrary domain-specific probabilistic dis-
criminative classifier for a given task. This can be seen as
a parallel to the traditional MRF models where one can
use arbitrary local generative classifier to model the unary
potential. One possible choice of p(xi|yi) can be General-
ized Linear Models (GLM), which are used extensively in
statistics to model the class posteriors given the observa-
tions [24]. Kumar propose the logistic function as a link in
the GLM. Thus, the local class conditional can be written
as p(xi = 1|yi) = σ(w0 +wT yi) = 1

1+e−(w0+wT yi)
.

Thereby, w0 and w are the parameters of such a reduced
model, corresponding to the length of the observed feature
data y. The specific form of p(xi|yi) yields a linear decision
boundary within the feature space spanned by vectors yi.
To extend the logistic model to induce a non-linear decision
boundary, Kumar introduces a transformed feature vector
f(yi) at each site si, employing arbitrary non-linear func-
tions. This might be regarded as a sort of kernel mapping
of the original feature vector into a high dimensional space,
yielding p(xi|f(yi)).

2.3 Non-Linear Support Vector Machines
Instead of introducing a transformed feature vector f(yi)

at each site si using non-linear functions, we propose to em-
ploy non-linear Support Vector Machines (SVMs) [28] as as-
sociation potential (i.e., A(xi,y) = log psvm(xi|yi)), as they
inhere appealing theoretical properties and tend to outper-
form GLMs, especially when the classes in the feature space
overlap [29]. Fortunately, the CRF framework allows a flexi-
ble choice of the association potential. However, the decision
function computed by SVMs measures distances to the de-
cision boundary, while the association potential requires a
posterior probability function. Thus, we utilize the approach
described in [34] and provided by [4] to convert the decision
function to a posterior probability function. The idea to ex-
tend SVMs to consider spatial correlations has been initially
proposed for linear SVMs by Lee et al. [23] and successfully
applied,e.g., in medical image segmentation [22].

2.4 Dual Support Vector Fields
The CRF models represents an extension of the Markov

Random Field (MRF), which itself is a simple extension of
the Logistic Classifier. For the homogeneous MRF, the in-
teraction potential is defined as I(xi, xj ,y) = v xi xj , for
a scalar parameter v, which penalizes every dissimilar pair
of labels. Thus, such a form of interaction favors piece-wise
constant smoothing of the labels without considering dis-
continuities in the observed data explicitly. In contrast, the
CRF framework, proposed by Kumar, computes the inter-
action potentials as a function of all observations y. In ad-
dition to modeling arbitrary pairwise relational information
between sites, the data-dependent smoothing can compen-
sate for the errors in modeling the association potential. To
model the data-dependent term, the aim is to have similar
labels at a pair of sites for which the observed data supports
such a hypothesis. Thus, Kumar chooses the interaction po-
tential to be I(xi, xj ,y) = xixj v

T µij(y), with µij(y) being
the concatenated feature vectors f(yi) and f(yj).

In contrast, we introduce a novel type of interaction poten-
tial based on Support Vector Machines as well:

I(xi, xj ,y) = v xi xj (1− ‖psvm(xi=1|yi)− psvm(xj=1|yj)‖)

with a scalar parameter v. The proposed distance measure
of the nonlinear SVM responses in the interaction potential
encourages label continuity, while discouraging discontinu-
ity. It further reduces learning of additional parameters to
computing v only. v can be learned, maximizing the “penal-
ized log pseudo-likelihood” [15] of (1) using gradient ascent
[27].
To find an “optimal” label configuration on a new test im-
age, we use max-flow/min-cut algorithms, as these can be
utilized, for binary classifications and if the probability dis-
tribution meets certain conditions, to exactly compute the
Maximum A Posteriori (MAP) estimate for an undirected
graph [14]. Our tests revealed best results for higher order
neighborhoods Ni, i.e. (n = 2).
As our novel CRF model incorporates Support Vector Ma-
chines in both, A(xi,y) as well as I(xi, xj ,y), we name our
approach Dual Support Vector Fields (DSVF).

2.5 Feature Set
So far, all major approaches to explicitly detect man made

structure from ground-level natural images, refer to the fea-
ture set initially proposed by Kumar and Hebert in [19].
Although the design of our own feature set is in some ways
inspired by their approach, we strive to engineer sophisti-
cated features to further reduce the level of ambiguity. Thus,
we now describe the details of our novel feature set.

2.5.1 Smoothed Histograms of Gradient Orientations
As image pre-processing, Bilateral filtering [32] is applied

to an input image I, as it smooths the image while preserv-
ing dominant edges. Subsequently, the bilateral filtered im-
age IBf is converted to HSL color space, yielding IBf/HSL.
To extract edges, Gabor wavelet transform [38] is performed
on the lightness channel of IBf/HSL. Gabor wavelets of the

form:ψϕ,ν(x, y) = gϕ,ν,σ(x, y)
[
ei kϕ,ν (x,y) − e−

σ2

2

]
with the

Gaussian envelope: gϕ,ν,σ(x, y) =
||kϕ,ν ||2

σ2 e
− ||kϕ,ν ||

2 ||(x,y)||2

2 σ2

are applied in 32 orientations ϕ from −90◦ to 90◦ with an
angular difference of 5.625◦ and a rather small sized kernel
(ν = 0 and σ = π

2
) to account for the delicate structures in

the images. Subsequently, non-maximum suppression [26] is
utilized to thin edges. Thereafter, as in [19], for each im-
age site si, the gradients contained within a window wc at
different scales c around the center of si are combined to
yield a histogram Hsi(c) (per scale c) over gradient orien-
tations. We employ five scales, instead of three as in [19],
c ∈ {16 × 16, 32 × 32, 48 × 48, 56 × 56, 64 × 64}. Instead of
weighting each count by the gradient magnitude at that pixel
as in [19], we simply increment the counts in the histograms.
This is due to the observation, that occurring high magni-
tude gradients, which are to be captured using“weighted his-
tograms”, might indicate a building, they may, however, also
result from strong edges that occur in nature, e.g., around
the trunk of a tree. Once the histograms are computed, Ker-
nel Smoothing is employed to alleviate the problem of hard
binning of the data. With N = 32 being the total num-
ber of bins in the histogram, hi the count of the ith bin of
Hsi(c), and a symmetric positive kernel smoothing function
K(x) with bandwidth b, the smoothed bin counts are given



Figure 3: Man made structures (highlighted) de-
tected by Dual Support Vector Fields

by: h′j =
∑N
i=1K((hj−i)/b) hi∑N
i=1K((hj−i)/b)

with K(x) = 1

ex
2 . Ku-

mar and Hebert [19] suggest b = 0.7 to restrict smoothing
only to neighboring histogram bins, yielding smoothed his-
tograms H′

si(c). We then employ a TABU search [11] and
Insertion Sort [6] to find and sort orientations ϕ of found
peaks in each H′

si(c) from highest to smallest. Thus, we
can detect the orientation ϕ∇1 of the highest bin h′∇1 , i.e.,
the most dominant gradient within the image. ϕi is then
mapped from 0 to 1 using a sinusoidal function. The map-
ping slightly favors the occurrence of vertical edges of almost
90◦, as those tend to often occur in man made structures.
The feature is computed for all scales c. Note that this fea-
ture is the only one in common with [19]. Additionally, we
use the raw value of h′∇1 along with sin(ϕ∇1) as feature.

2.5.2 Junctions & Line Patterns
Man made structures, in general, exhibit a great amount

of parallel lines as well as near right angle junctions. We har-
ness such properties as a measure of discriminancy, defining
specialized features to capture them. Kumar and Hebert [19]
suggest evaluations of the histograms H′

si(c) using heaved
central-shifted moments of various orders to capture what
they call the average “structuredness” in image sites. How-
ever, these moment based features are not necessarily an ob-
vious choices for features in the search for man-made struc-
tures, as the presence of high magnitude gradients within
an image site alone, does not suffice to constitute a man-
made structure, as edges exist in nature too. Additionally,
such moment based features do not yield information about
differences in orientations between the high magnitude gra-
dients capture, which is why Kumar and Hebert suggest the
use of angular differences between the first two highest local
maxima in each H′

si(c). To get a more qualitative measure
about the number of found gradients as well as orientational
differences which incorporates all found peaks, we propose
a different set of features. For scales c ∈ {2, 3, 4, 5} we com-
pute the number n∇ of dominant gradients per each image in
s for each H′

si(c). Thereby a found peak in H′
c is defined

as a “dominant” gradient, if its value is at least 60 % of that
of the highest gradient h′∇1 . Additionally, we compute the
average angle ∆ϕ∇ between all found dominant gradients:
∆ϕ∇ = ‖ sin( 1

n∇×(n∇−1)

∑n∇×n∇
i,j ‖ϕ∇i − ϕ∇j‖)‖, if i 6= j.

Additionally, we perform an analysis on line junctions and
repetitive line patterns indicating significant or repeating

Figure 4: Dual Support Vector Fields (left) outper-
forming the Logistic Classifier (right)

building elements such as doors or windows. First, line
segments are detected applying the Line Segment Detec-
tor (LSD) [13] to the l channel of IBf/HSL. Resulting line
segments are quantized and grouped into 8 orientations of
22.5◦ angular difference between −90◦ and 90◦. Line seg-
ments that are, in length, below a specific threshold, are
discarded. Thereby, thresholds for nearly horizontal and
vertical lines are slightly smaller than that for orientations
in between, as also small vertical and horizontal lines bear
important information in the context of man made structure
detection.
All lines that do not lie on or near to a gradient of almost
similar orientation, extracted by the Gabor wavelet trans-
form, are discarded as well. This is due to observations that
even very small intensity variations that were not detected
as a gradient in previous edge extraction, might invoke a
line due to the LSD.
For each image site si and scales c = {2, 3, 4, 5}, we then
compute the number of parallel lines n‖0◦ and n‖90◦ for 0◦

and −90◦/90◦ in wc. For scales c ∈ {2, 3, 4, 5}, we further
compute the number n� of orientations that contribute a
minimum number of lines in wc as well as the average an-
gle ∆ϕ� between all such found dominant line orientations:

∆ϕ� = ‖ sin( 1
n∇×(n∇−1)

∑n∇×n∇
i,j ‖ϕ�i − ϕ�j‖)‖, if i 6= j.

Note that scale c ∈ {1} has been tested and deliberately ne-
glected for these kind of features, as it is to small to provide
non ambiguous information.

2.5.3 Corner Point Patterns
Using corner points as a feature is motivated by the obser-

vation that corners in and around man made structures often
occur on near right angle corners and junctions. Thus, we
assume, that a clustering of such corner points in a specific
image region might indicate the occurrence of a man made
structure in that region and we can simply use the number
ncp of such corner points within wc as a measure for the re-
gion to be more likely man made than natural. First, corner
points are detected applying the Shi-Tomasi corner detector
[21] to the l channel of IBf/HSL. Second, for each detected
corner point p we select the image site si it occurs within
to take its corresponding wc as a reference region and check
whether the average gradient orientation difference would
be ∆ϕ∇ > 0.95 for at least one c ∈ {1, 2, 3, 4, 5}. If so, the
corner point is marked as a “right angle corner point”. Fi-
nally, for each image site si, we compute the number of right
angle corner points ncp for scales c ∈ {1, 2, 3, 4, 5}. In an ad-
ditional step, we also added corner points within a very close
distance to the right angle corner points along with corner
points in a slightly farther distance that lie on horizontal
or vertical gradients to ncp. This is due to the assumption,
that these points belong to the man made structure as well.



2.6 Results
Our model was trained and tested on the image data and

label set provided by Kumar (108 train img., 129 test img.).
The Logistic classifier approach (i.e., I(xi, xj ,y) = 0) of
Kumar [17] and our own serves as profound references to
evaluate the discriminative power of our proposed enhanced
feature set in combination with non-linear SVMs. Our en-
hanced feature set is able to detect up to 11 percent more
man made structures while having an almost identical false
positive rate than Kumar. The application of the DSVF
maintains this high discriminative power while reducing false
detections. The computation of features on a new test im-
age, as well as scene labeling takes 7 - 14 seconds on an
Intel i5 2.53GHz machine, depending on Ni, and is therefore
suitable to work in the system by [2].

DR
(in %)

FP
(per img.)

Kumar [17]
Logistic Classifier 61.79 2.28
Discrim. Random Field 72.54 1.76
our approach
Logistic Classifier 72.58 2.53
Dual Support Vector Field 72.18 1.74

Table 1: Results of our algorithm compared to Ku-
mar [18]. Detection Rates DR are given in % and
False Positives FP in false detection per image

3. VERIFICATION & FALSIFICATION OF
OBJECT DETECTIONS

Generally, object localization can be divided in two steps.
First, object class categorization can be performed to sim-
ply check whether elements of an object class occur in the
image. It however does not detect or localize any elements
each class within the image. It therefore performs consid-
erably faster than the detection or localization algorithm,
which would be subsequently be employed, ideally only for
objects of found object classes. Banf and Blanz [2] choose
a Bag of Visual Words approach as described in [7] for ob-
ject categorization as well as Discriminatively Trained Part
Based Models by [10] for object detection. Both algorithms
are trained on the 20 object classes of the “PASCAL Visual
Object Classes Challenge 2010 (VOC2010)” [9].
We propose a further subsequent step to verify or falsify ob-
ject detections, applied to the outcome of any object recogni-
tion algorithm, which can be treated just like a “black box”,
as illustrated in figure 5. To the best of our knowledge, it
is the first of its kind. We motivate that such an algorithm
becomes significantly important in the context of image eval-
uation for the visually impaired, to not confuse a blind user
with incorrect object detections. Our approach therefore is
not to improve recognition levels of the employed categoriza-
tion or detection algorithms but rather separate correct from
incorrect object localizations. Furthermore, the “ideal” cas-
cade of the categorization to detection pipeline, as shown in
figure 5, hat to be slightly dissolved. Experiments based on
ground truth data revealed that the categorization algorithm
sometimes could not find a specific object class which how-
ever was represented within the image and whose instances
could be localized by the detection algorithm. Finally, we

Figure 5: The ideal object categorization, recogni-
tion & verification processing pipeline

present a learning-based approach to object detection veri-
fication / falsification, which includes:
• A “conservative” strategy of rather neglecting a true

detection than accepting a false one, which would cre-
ate confusion.

• Building an additional feature set that uses relative
information between all found objects within an image
besides categorization and detection confidence levels
to corroborate this “conservative” strategy, i.e. correct
falsification.

• Allowing uncertainty. Some objects tend to be strongly
classified in several categories. E.g. an upright sitting
cat is eventually classified as “cat” as well as “person”.
Our algorithm allows for such an uncertainty as sev-
eral similarities exist indeed. The task will than be up
to the user to explore and categorize the object with
additional acoustical low-level features.

We select a set of 5 classes (“car”, “cat”,“airplane”, “horse”,
“person”) for evaluating our proposed algorithm, as they are
rather distinguishable for categorization / detection than
e.g. “cat” and “dog”. For computational complexity reduc-
tion we executed object categorization and detection as well
as parts of our own algorithm in parallel, using OpenMP [5].

3.1 Feature Set
For each object detection oi a 16 dimensional feature vec-

tor fvoi is created, consisting of both the classification con-
fidence measures of the object categorization vcateg.(coi) and
detection vdet.(oi, coi). Additionally, we extract further rather
“relative” information. Before extracting features for each
object detection oi, however, we perform a prior algorithm
that checks for major overlaps (≥ 70 %) of detections within
each object class. Those detections would then be rather as-
sumed to be a single detection. Thus, a single detection is
built or “fused” from the former two, forming a single great
rectangle out of the smaller ones. The confidence measure
of the new single detection would be the greater one of the
former detections. Generally, all information within fvoi
can be divided in two major groups. First, all elements
computed based on the information of all detected objects
within the object class coi of oi, called “intra-class features”.
The second part of each feature vector is assembled based on
features computed based on the information of all detected
objects across all classes called “inter-class features”:

3.1.1 Intra Object Class Features

• vcateg.(coi) - categorization confidence value for class
coi . The higher vcateg.(coi), the more likely objects of
coi to occur in the image.

• r(i, coi) - ratio of the area of oi (of object class ci)
divided by the area of the image. If r(oi, coi) ≈ 0, oi
covers almost no part of the image. If r(oi, coi) ≈ 1,
oi covers almost the whole image.



Figure 6: MST representations on image 16 of the
test set for classes “car”, “cat”,“horse” and “person”.
Note that no objects of the “airplane” class have
been detected. Min. distances marked in green

•
∑

(r(oi, coi)) - sum of all r(oi, coi) of all oi of coi .

• nnb(oi) - number of all neighbored object detections of
oi of coi . If high, all detections of coi become unlikely.

• µd(coi) - mean distance and “cluster index” of all oi of
coi . Multiple small and clustered oi often tend to be
incorrect each.

• nfusions(oi) - number of object detections that over-
lapped by more than 70 % in coi and have been “fused”
to create oi. If greater zero, oi is often a true detection.

• µd(oi, coi) - mean distance from oi to all neighbored
object detections within coi . The greater µd(oi, coi),
the more likely oi not to belong to a certain cluster.

• vdet.(oi, coi) - confidence value of the detection algo-
rithm for oi of class coi . The higher vdet.(oi, coi), the
more likely oi.

• µ↑(vdet.(oi, coi)) = 1
n

∑
j d↑(vdet.(oi, coi), vdet.(oj , coi)),

with d↑(vdet.(oi, coi), vdet.(oj , coi))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coi)‖, if d > 0

0, otherwise

with n denoting number of objects of class coi . The
higher µ↑(vdet.(oi, coi)), the more likely oi, although
vdet.(oi, coi) might be small.

• µ↓(vdet.(oi, coi)) = 1
n

∑
j d↓(vdet.(oi, coi), vdet.(oj , coi)),

with d↓(vdet.(oi, coi), vdet.(oj , coi))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coi)‖, if d < 0

0, otherwise

with n denoting number of objects of class coi . The
higher µ↓(vdet.(oi, coi)), the more unlikely oi, espe-
cially if vdet.(oi, coi) is already small.

3.1.2 Inter Object Class Features

• µ↑(vcateg.(coi)) = 1
n

∑
j d↑(vcateg.(cooi ), vcateg.(cj)),

with d↑(vcateg.(coi), vcateg.(cj))

=

{
d = ‖vcateg.(coi)− vcateg.(cj)‖, if d > 0

0, otherwise

Thereby n denotes number of all found object classes
cj and d↑(vcateg.(cooi ), vcateg.(cj)) is computed ∀cj 6=
coi . The higher µ↑(vcateg.,coi ), the more likely cj , al-
though vcateg.,coi might be small.

• µ↓(vcateg.(coi)) = 1
n

∑
j d↓(vcateg.(coi), vcateg.(cj)),

with d↓(vcateg.(coi), vcateg.(cj))

=

{
d = ‖vcateg.(coi)− vcateg.(cj)‖, if d < 0

0, otherwise

Thereby n denotes the number of all found object
classes cj and d↑(vcateg.(cooi ), vcateg.(cj)) is computed
∀cj 6= coi . The higher µ↓(vcateg.(coi)), the more un-
likely cj , especially if vcateg.(coi) is already small.

•
∑
↑(oi, coj ) - measure for the number of oj of different

classes (coi 6= coj ) that do overlap with oi of coi by
more than 70 % of their sizes. The higher, the more
likely object oi to contain smaller objects oj . (Indica-
tion for oi being a correct detection, as the detection
algorithm, while detecting a correct object oi of class
coi , tends to find multiple smaller incorrect object de-
tections of other classes coj within the region of oi.

•
∑
↓(oi, coj ) - measure for the number of object detec-

tions oj of different classes (coi 6= coj ) that do overlap
with oi of coj by more than 70 % the size of oi. The
higher, the more likely that oi lying in another bigger
object oj . (Indication for oi being incorrect, as the
detection algorithm, while detecting a correct object
oj of class coj , tends to find multiple smaller incorrect
object detections within the region of oj).

• µ↑(vdet.(oi, coj )) = 1
n

∑
j d↑(vdet.(oi, coi), vdet.(oj , coj )),

with d↑(vdet.(oi, coi), vdet.(oj , coj ))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coj )‖, if d > 0

0, otherwise

Thereby n denotes number of all object detections oj
in all classes coj and d↑(vdet.(oi, coi), vdet.(oj , coj )) is
computed ∀coj 6= coi . The higher µ↑(vdet.(oi, coj )), the
more likely oi, although vdet.(oi, coi) might be small.

• µ↓(vdet.(oi, coj )) = 1
n

∑
j d↓(vdet.(oi, coi), vdet.(oj , coj )),

with d↓(vdet.(oi, coi), vdet.(oj , coj ))

=

{
d = ‖vdet.(oi, coi)− vdet.(oj , coj )‖, if d < 0

0, otherwise

Thereby n denotes number of all object detections oj
in all classes coj and d↓(vdet.(oi, coi), vdet.(oj , coj )) is
computed ∀coj 6= coi . The higher µ↓(vdet.(oi, coj )), the
more unlikely oi, especially if vdet.(oi, coi) is already
small.

To compute µd(coi) and µd(oi, coi), the objects oi of each
object class coi are represented as a (fully connected) graph
G = {V,E}, where nodes V denote oi distance between two
objects an edge E. The distance between two objects is
considered the edge weight. µd(coi) is then computed as the
sum of the edge weights (i.e. distances between objects) of
the Minimal Spanning Tree (MST), using Prim’s algorithm
[6], as illustrated in figure 6. Additionally, µd(oi, coi) is com-
puted as the distance from each object oi to all neighbors
within coi , divided by the number of neighbors. Paths are
computed based on Dijkstra’s algorithm [6] on graph G.



Figure 7: Examples of our approach outperform-
ing the SVMv method. Airplane detections in im-
ages 10 (vcateg.(ci) = −0.057, vdet.(i, ci) = −0.027) and
17 (vcateg.(ci) = 0.9438, vdet.(i, ci) = −0.195) as well
as the cat detection in image 7 (vcateg.(ci) = 0.1756,
vdet.(i, ci) = −0.036) could be correctly verified by our
approach opposed to SVMv or BTv. On the other
hand, as opposed to SVMv or BTv, incorrect person
detections in images 4 (vcateg.(ci) = 0.6005, vdet.(i, ci) =
0.5979) and 6 (vcateg.(ci) = 1.2143, vdet.(i, ci) = −0.066)
could be correctly falsified by our approach

3.2 Feature Set Transform & SVM Training
Due to the rather linear separable and correlated nature

of the feature set, before training a classifier, we propose to
perform a transformation of the feature set, using Principal
Component Analysis (PCA) [8], which projects each feature
vector fvoi with l = 16 dimensions, onto a corresponding

vector fv′
oi

in an orthogonal and uncorrelated subspace.
Thereby, projection matrix P consists of the selected num-
ber of Eigenvectors (i.e. 15 in our application), in decreasing
order, according to their Eigenvalues. Both, Eigenvectors
and Eigenvalues can be computed from a learning data set
by diagonalization of the covariance matrix, e.g, based on
Singular Value Decomposition (SVD) [27].
Thus, for a set of 30 images, taken from the image set of
the PASCAL Visual Object Challenge 2010, we yield a total
number of 523 object detections and therefore 523 feature
vectors fvoi that are used to compute P . Classification is
based on linear Support Vector Machines (improving over
non-linear SVM in our experiments), which are trained on
a set of only of 85 projected feature vectors fv′

oi
.

3.3 Evaluations
The classifier is tested on an image set of 30 images (shown

in figure 8), yielding a total number of 560 object detec-
tions. For tests, each detection is labeled manually as either
1 or -1, being a correct or incorrect detection. We then
compared our algorithm with two simpler classification ap-
proaches. First, a basic thresholding approach BTv, that
classifies all detections with vcateg.,ci > 0 and vdet.,i > 0 as
a correct detection and as an incorrect detection otherwise.
Second, a SVM based classifier SVMv trained on vcateg.,ci

C.V.
(n/%)

C.F.
(n/%)

I.V.
(n/%)

I.F.
(n/%)

Ground
Truth

27/100 533/100 - -

BTv 13/48.1 529/99.2 4/0.08 14/51.9
SVMv 18/66.7 529/99.2 4/0.08 9/33.3

proposed
algorithm

21/77.8 533/100 0/0 6/22.2

Table 2: Results of (C)orrect and (I)ncorrect
(V)erifications /(F)alsifications by the algorithms

Figure 8: 30 images to test SVM classification on,
taken from the Visual Object Classes Challenge 2010
(VOC2010). Img. 25 - 29 (for “non object” training)
have been taken from the Corel image database. [9]

and vdet.,i. SVMv only. We trained both,a linear and non-
linear classifier, both yielding equivalent results.
The results of our experiments in table 2 indicate our pro-
posed algorithm to be very appropriate to be used within our
application. Our algorithm was not only able to correctly
falsify 100% of incorrect detection, it also outperformed the
two other algorithms it was compared with when it comes to
correct verification and incorrect falsification rate. Figure 7
illustrates some examples where our algorithm outperforms
the comparison algorithms. It performs for each image in
the test set in ≈ 3 seconds on an Intel i5 2.53GHz ma-
chine, in comparison to ≈ 6 seconds for categorization (of
the 5 object classes) based on [7] and ≈ 30 seconds for de-
tection based on [10]. Hence, it can be considered to be used
in real-time.

4. CONCLUSION
We have presented two novel algorithms for the use in im-

age pre-processing, especially for the visually impaired. Ro-
bust scene classification is performed based on a novel type
of CRF, called Dual Support Vector Fields (DSVF),
that harness the high discriminative power of non-linear sup-
port vector machines for both, unary and pairwise poten-
tials. As shown, DSVF, in combination with the advanced
feature set, provide a valuable alternative to the model pre-
sented in [17] for man made structure detection. DSVF
thereby crucially reduce parameter learning, in both time
and complexity, and are, therefore, highly suitable, given an
arbitrary feature set, for “rapid prototyping” of classification
problems with spatial dependencies. A second algorithm has
been proposed as a subsequent step of object recognition



to verify or falsify results, which becomes significantly im-
portant in the context of image evaluation for the visually
impaired. Great benefit of the proposed algorithm is that
both, the algorithm itself as well as the integrated feature
set can be applied to the results of any common recognition
algorithm.
Due to their design, both algorithms can be also employed
in other applications than “auditory image understanding”,
e.g., for fully-automated computer vision systems. Inte-
grated in the image sonification system in [2], these ap-
proaches deliver a complete powerful system that helps visu-
ally impaired users to explore image material. The approach
is therefore different from ambitious attempts to provide a
complete verbal description of image content, as,e.g., a hu-
man with normal vision would give it. Feedback and exper-
iments in [2] both indicate that such an exploratory system
is a least equally helpful to blind people, as it gives infor-
mation of “what is where” and a direct perceptual access. It
is also important to us to introduce this problem setting to
the computer vision community, as it sheds new light on the
understanding of vision in general in terms of what might
be the “intermediate description level” below a complete se-
mantic image description, or what features, categories and
mechanisms need to be integrated for scene understanding,
both in computer vision and in the human visual system.
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