Sonification of Images for the Visually Impaired using a
Multi-Level Approach

Michael Banf & Volker Blanz
Media Systems Group
Institute for Vision & Graphics
University of Siegen

ABSTRACT

This paper presents a system that strives to give visually
impaired persons direct perceptual access to images via an
acoustic signal. The user explores the image actively on a
touch screen and receives auditory feedback about the image
content at the current position. The design of such a system
involves two major challenges: what is the most useful and
relevant image information, and how can as much informa-
tion as possible be captured in an audio signal. We address
both problems, and propose a general approach that com-
bines low-level information, such as color, edges, and rough-
ness, with mid- and high-level information obtained from
Machine Learning algorithms. This includes object recogni-
tion and the classification of regions into the categories “man
made” versus “natural”. We argue that this multi-level ap-
proach gives users direct access to what is where in the im-
age, yet it still exploits the potential of recent developments
in Computer Vision and Machine Learning.

Categories and Subject Descriptors

H.5.2 Information interfaces and presentation]|: User
Interfaces-Auditory (non-speech) feedback

General Terms

Human Factors, Design, Experimentation

Keywords
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1. INTRODUCTION

Helping to make the visual world accessible to visually
impaired persons has inspired researchers in Computer Vi-
sion for a long time. Perhaps the most ambitious software
solution to the vision problem would be an algorithm that
produces a semantic description of the image content which
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Figure 1: A blind participant during image explo-
ration using our software and a Touch Screen.

is then output in natural language on a speech synthesis de-
vice. This automated image analysis system would mimick
a partner with normal vision who describes the image to the
user. However, despite the fact that automated image un-
derstanding will remain a challenge to researchers for many
years, it would continue to deprive the visually impaired of a
direct perceptual experience, an active exploration, and an
impression of where things are in the image and what visual
appearance they have.

Our approach, therefore, is to augment the sensoric capa-
bilities of visually impaired persons by translating image
content into sounds. The task of analyzing and understand-
ing images is still up to the user, which is why we call this
approach auditory image understanding. Very much like a
blind person who explores a Braille text or a bas-relief image
haptically with the tip of her finger, our users touch the im-
age (or a touch pad or touch screen) and experience the local
properties of the image as auditory feedback. They can use
the system to analyze images that they find on the internet,
but also for personal photos that their friends or loved ones
want to share with them. It is this application scenario that
makes the direct perceptual access most valuable. The user
feedback that we received for our system indicates that vi-
sually impaired persons appreciate the fact that they obtain
more than an abstract verbal description and that images
cease to be meaningless entities to them.

The system presented in this paper is a special case of the
more general modular computer vision sonification model [2],
which has proposed this direct exploration paradigm in the
domain of image sonification for the first time. That work
was in contrast to existing sonification frameworks which
e.g. help visually impaired navigating through environments
[25], [3]. There has been done previous work on the sonifica-
tion of low-level characteristics of images for visual impaired.
The Voice [17] generates sounds depending on a pixel’s light-
ness and its position within the image. [24] uses color at-
tributes to filter an underlying white noise using Subtractive
Synthesis. Rather than color, [26] and [19] sonify the pro-
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Figure 2: The Visual to Acoustical Processing Pipeline.

gression of edges in images. However, all those approaches
either focus on single elementary features and/or follow a
non explorative paradigm, evaluating the image sequentially
from left to right. Unlike previous work on explorative im-
age sonification [2], the focus of this paper is to leverage
Computer Vision and Machine Learning algorithms and to
derive and sonify image information on many levels, ranging
from low-level color information to high-level object recog-
nition. Still, the results of these algorithms remain tied to
the image pixel where the feature occurs, so the user always
knows what is where, and given the low-level information,
associates it to the appearance in terms of color or rough-
ness. To the best of our knowledge, this is the first time
that high-level Computer Vision output is presented to the
user in this way in order to augment the richness of sensory
input. In our system, a global, verbal description of the ob-
jects found in the scene is added only to help users to get
a quick overview and to warn them what to expect in the
image. Our framework has several aspects in common with
the one presented in [2]:

e The modular sonification system and an pixelwise ex-
ploration paradigm,

e The sonification of mixtures of colors using combina-
tions of acoustical entities.

e Low-level features (edges, roughness),

e The usage of sound mixture control parameters 9.

Main differences are:

e Multi-level image analysis paradigm, combining low-,
mid- and high-level features in each pixel.

e Classification of pixel neighbourhoods into “man-made”
versus “natural”.

e Automated object recognition (local and global sonifi-
cation).

e The sonification of low-level features at a given pixel
depends on the results of high-level classification.

e Novel sonification scheme. The sounds associated to
visual features (colors, roughness) are selected based
on perceptual and semantic considerations.

e Using fundamental sound characteristics rather than
complex MIDI instruments for color sonification.

e Geared to scene understanding, rather than object recog-

nition by the user.

On a more general level, the contributions of this paper are:

e We present a tool to make the internet more acces-
sible to visually impaired by making available image

data for interactive audible exploration. An approach
which helps blind people gaining fundamental image
understanding of sceneries.

e We develop a fundamental concept of an audible rep-
resentation of color space that can be used to convey
the concept of colors and color mixing to blind people.

e We propose an intuitive color sonification concept, rep-
resenting colors the way they are perceived visually by
appropriate fundamental sound characteristics. The
concept does not require any MIDI instruments and
therefore no external MIDI synthesizer.

e We overcome the limits of manual acoustical object
recognition, employing machine learning techniques.

e Besides colors, we sonify the grade of roughness on
classified natural regions using the intuitive acousti-
cal counterpart, brown noise. Additionally we utilize
drum rhythms to represent detected man made struc-
tures and emphasize occurring single and repetitive
edges of various orientations upon those regions..

e We present a stand-alone application, designed to be
used by visually impaired people on their personal
computer. Thus, the software is easily operable and

supported by speech output [20], guiding the user through-

out the whole usage of the program.

1.1 Visual to Acoustical Processing Pipeline

Fig. 2 gives a brief overview over the processing pipeline.
For each color pixel I(z,y) of the input image I every in-
formation that could be sonified is pre-computed by a set of
computer vision algorithms and stored in a data-structure
called augmented visual pizel v(z,y). During interactive ex-
ploration, based on the user’s current position (x,y) and his
selection which features he wants to be sonified, the appro-
priate elements from wv(z,y) are copied into an individual
sonification descriptor s. A sequence of those sonification
descriptors for all pixels on the exploration trajectory are
added to a queue structure. The Queue structure makes sure
that no pixels are skipped even for fast motions. In real-time
or buffered with a slight delay, the sonification module pro-
cesses all sonification descriptors from the Queue, turning
all elements of each s into a complex, internally synthesized
sound, that we call audible pizel a(z,y).

vn(z,y) sn(z,y)
I(z,y) — va(z,y) |, [ ss(2,9) — queue — a(z,y)

2. AUDIBLE COLOR SPACE

For color sonification we we use the HSL model [14], as
an intuitive color model, where each color value is described
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Figure 3: Left: Color sonification as in [2] . MIDI
Instruments represent opponent colors. Right: Our
sonifcation model. Opponent colors are represented
by Complementary Sound Characteristics.

by hue h, saturation s and lightness [, rather than e.g. the
RGB system, as it is more easy to be understood by a con-
genital blind person. What makes color sonification diffi-
cult is the fact that color values often change rapidly from
pixel to pixel even if there are only minute variations in tex-
tures and materials. Often, the reason is image noise by
the camera. It is obvious that such changes clearly overbur-
den a blind user. Therefore we smooth the image patch
around the pixel position (z,y) based on bilateral filter-
ing [22], which filters noise while preserving edges within
an image. Subsequently, smoothed color values are stored
within each augmented visual pizel v(z,y) of the image:
’Uh(x, y) = hbf(ﬂ?, y)v v5($7 y) = Sbf(it,y), Ul(mf y) = lbf(xv y)'
Our color sonification concept represents each color value in
the HSL model as a mixture of fundamental sound charac-
teristics, inspired by Hering’s theory of opponent colors [11].
In principle, so called complementary sound characteristics
represent the opponent color pairs red-green and blue-yellow,
as shown in Fig. 3 (right). Later a combination of adjacent
sound characteristics represents color mixtures. As no mix-
ture of a pair of opponent colors exists [11], there will be
no mixture of a pair of complementary sound characteristics
in the sonification model either. Different luminances, rang-
ing from black to white, are represented by a musical scale.
For harmonic reasons, we only utilize the whole tones of the
octave and map each lightness value [ between 0 and 1 to
one of the eight tones of the scale. Using such fundamen-
tal sound characteristics has several benefits over common
MIDI instruments as those used in [2]. First, instruments
in general do not give a decent representation of a color’s
visually perceived characteristic. Instruments would be as-
sociated rather with certain objects, e.g. a choir with a
cathedral. In contrast, our fundamental sound characteris-
tics might allow the user to perceive acoustically what cor-
reponds to the visual perception of a seeing person. Second,
using high quality MIDI instruments requires usage of an
external MIDI Synthesizer and additional linkage software
as well as a certain level of expertise.

According to color theory[12], some colors are visually per-
ceived as warm, such as yellow, opposed to blue, which is
perceived as cold. Red is referred to as a vibrant color op-

posed to rather calm green. Gray would be rather monotonous.

We make use of the Synthesis Toolkit (STK) [5], a set of
open source audio signal processing and algorithmic synthe-
sis classes, to build our own additive synthesis [21] Model
that is able to synthesize such characteristics from scratch.
Additionally, doing the complete sound synthesis within the
system makes any external synthesizer unnecessary.

Figure 4: Classification Results. White squares il-
lustrate detected man made structures.

2.1 Sound Synthesis

Color sound synthesis starts of with a single (monotonous)
sine wave for gray, changing in pitch according to lightness.
With red, a tremolo is created adding a second sine wave,
just a few Hertz apart. A beat of two very close frequen-
cies (diff. < 5Hz ) creates a tremolo effect. The more red
the color turns, the smaller we tune the gap between both
frequencies, increasing in speed of the perceived tremolo.
To simulate the visual perception of warmth with yellow,
we increase the volume of bass as well as the number of
additional sine waves (tuned to the frequencies of only the
even harmonics of the fundamental sine wave). The bass
as well as the even harmonics are acoustically perceived to
be warm. The result sounds like an organ. The coldness
of blue was originally planned to be sonified adding the odd
harmonics which would lead to a square wave, creating a
cold and mechanical sound. However the sound so produced
is to annoying to be used, so we applied one of the Synthesis
Toolkit’s pre-defined instrument models that is able to syn-
thesize a sound of a rough flute or wind. An increase in blue
is represented by an increase of the wind instrument’s loud-
ness. Finally, to create an opponent sound characteristic to
vibrant red, we represent green, as a calm motion of sound
in time using an additional sine wave tuned to a classical
third to the fundamental sine wave, forming a third chord,
as well as two further sine waves, one tuned almost like the
fundamental sine, the other like the second sine, far enough
apart to create not the vibrant tremolo effect but a smooth
pattern of beats, moving slowly through time.

2.2 Sound Parameter Volumetrics

Calculating mixture relations between our sound elements
makes use of volume shape Y(h, s), a control entity that was
proposed in [2]. A volume shape ¥(h, s) for each instrument
maps a volume ¢ from 0 to 1 to each color (h,s), regardless
of [. We make use of this idea to control our sound param-
eters, except that we consider lightness, and pre-calculate
a control parameter value for every sound characteristic at
every position within the HSL model, calling it sound param-
eter volumetric ¥(h,s,l). The control values that we use to
initialize the computation of each sound parameter volumet-
ric from [2] are thought to be applied at luminance level of
I = 50%. Hence within each sound parameter volumetric,
the value of ¥(h,s,l) decreases as the color gets lighter or
darker. A more in-depth research in the HSL color space
revealed two major irregularities: Below 50 % luminance
around yellow (h = 60°) there is a certain region that would
be visually perceived as olive green. Additionally, a deep
blue at h = 240° increasing in luminance tends to appear
violet visually. In those regions of the color space we had to
adjust our control parameters to compensate for the visual
perception to fit the audible perception.
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3. AUDITORY IMAGE UNDERSTANDING

To allow users to understand more difficult scenes, we in-
corporate machine learning techniques to pre-evaluate the
image, in our case for finding man-made structures and nat-
ural regions and post-process them for subsequent sonifica-
tion.

3.1 Detection of Man-Made Structures in Nat-
ural Images

For discrimination of man-made structures from natural
regions, we implemented the approach described in [13]. Im-
ages are divided into patches of 16 x 16 pixels each. For each
patch, a feature vector is computed based on a histogram of
different oriented gradients. A discriminative random field
(DRF) is then learned and applied to classify patches by
their feature vectors (see Fig. 4 for some exemplary results).
The DRF here surpasses regular binary classificators, such
as e.g. support vector machines, as it incorporates neigh-
borhood interactions in the labels as well as the observed
data. Smooth regions in images are notoriously difficult to
classify. We address this issue in the following section.

3.2 Natural Regions Post-Processing

Natural Regions (i.e. those that are not classified as man-
made) are evaluated applying a textural roughness measure
called fractal dimension (FD). [18] show that the fractal di-
mension of a surface corresponds closely to our intuitive no-
tion of roughness. Hence, on all natural classified regions
we compute the fractal dimension using the bilateral fil-
tered image. The Fractal dimension can be computed via
the differential boz-counting method [15]. We implemented
an improved box-counting method for image fractal dimen-
sion estimation developed an proposed recently by [15]. The
fractal dimension of 2D regions is between 2.0(a smooth 2D
surface) and 3.0 (a perfect 3D cube). Thus, we map our
results to 0 to 1.

FDyy(,y),

if (x,y) € natural region
oo = { Do (5 € st

otherwise

Note that fractal dimension helps to solve the problem of
how to classify smooth regions. As we have those regions
labelled as natural, post-processing by FD results in a soni-
fication that corresponds neither to natural nor man-made.

3.3 Man Made Structures Post-Processing

All man made structures are analyzed further to extract
additional features that reveal information about internal
structures of buildings.

3.3.1 Building Structure using Highest Gradient
From the histogram of gradients in a man-made structure

patch, we get the orientation of the highest gradient a,
applying a local search method, called TABU Search [10].

Participant | Hitrate (% , N) | X I o

Adult 97.5 % (39/40) 45s|44s|16s
Teen. 1 97.5 % ,(39/40) | 7.5s | 835|295
Teen. 2 97.5 % ,(39/40) 45s | 51s|3.7s

Table 1: Experiment I. Hit rates and times (median
X , mean p, and standard deviation o in seconds),
for each trial and participant

Resulting orientations a1 are mapped by sin(ai1) to values
between 0(horizontal) and 1(vertical).

[ sin(an), if (x,y) € manmade structure
va(z,y) = { -1, otherwise

3.3.2  Build. Elements using Line Patterns Analysis

We perform an analysis on line junctions and repetitive line
patterns of various orientations indicating significant or re-
peating building elements such as doors or windows. This
analysis is inspired by humans grating cells, discovered in
1992 by Von der Heydt et al. [23]. Grating cells respond
vigorously to gratings of bars of appropriate orientation, po-
sition and periodicity. In contrast, grating cells respond very
weakly or not at all to single bars which do not make part
of a grating. We employ to state of the art line segment
detection algorithms, the line segment detector (LSD) [7] on
the bilateral filtered image and the progressive probabilistic
hough transform (PPHT) [16] on the gradient image, remove
all segments below some minimum length and combine the
results of both algorithms, fusing all lines that are parallel
and only a pixel’s distance apart.

Results are quantized and grouped into 8 orientations of
22.5° angular difference between —90° and 90°.

For each image patch within the found man made struc-
ture, we compute the sum of parallel lines of all orientations
within a certain 40 x 40 window around the center of the
image patch. Insertion sort is applied to find the highest
number of parallel lines > P for a certain orientation (.

if (x,y) € manmade struct. A3 ;5 > 1
otherwise

vy, (2, y) = { %5

3.4 Object Recognition

To help users to identify standard objects in a scene, we
employ object detection and recognition algorithms. The
OpenCV library [4] offers an implementation of a Bag of Vi-
sual Words classification approach developed by [6] as well
as the latent SVM detection and localization algorithm pro-
posed by [9]. Both algorithms were trained on the 20 object
classes provided by the Visual Object Classes Challenge 2008
(VOC2008) [8]. The detection algorithm by [9] localizes an
object within the image, finding an appropriate rectangle
around it, while the approach by [6] only gives a certain
probability whether an object will be within the image or
not. Hence, to save time and reduce false localizations, we
apply the latter algorithm first and exclude each object class
that was not detected from further localization efforts. Af-
ter classification, the user is informed via speech output [20]
which objects were found (global sonification) in order to
make sure he does not miss it during exploration. Finally,
we can label each pixel within a found object’s rectangle for
local, i.e. pixel-wise sonification. A pixel may belong to



Img | Finding Tasks Part. Time
1 red build.,sky,snow line Adult 12.1 s
Teen. 1 | 19.0 s
Teen. 2 | 25.0 s
2 build.,green lawn,light blue | Adult 17.3 s
sky,dark blue water

Teen. 1 | 31.0 s
Teen. 2 | 23.6 s
3 building,water,sky Adult 10.6 s
Teen. 1 | 21.0 s
Teen. 2 | 20.2 s
4 buildings, lawn, trees, blue | Adult 45.0 s
roof, white sky

Teen. 1 | 12.5 s
Teen. 2 | 10.7 s

5 dark red part of build. Adult 16.9 s
Teen. 1 | 6.5 s
Teen. 2 | 858

Table 2: Experiment II, see Section 5.2.

several objects, e.g:

[ 1, if (x,y) € detected cat region.
Veat (2, Y) = { 0, otherwise

3.5 Sonification of Complex Features

Sonification of complex features is processed using precom-
puted wave-files with the irrklang Audio Engine [1]. It al-
lows for post-processing precomputed wave-files with sound
effects such as volume change, playback-speed change, pitch
change, reverberation, echo, stereo panning and 3D sound
positioning. We harness such possibilities to convey complex
features audibly along with colors without distortion.

3.5.1 Natural Regions

Natural regions are sonified using brown noise as an acous-
tical roughness representation. Its spectral density is in-
versely proportional to f?, meaning it has more energy at
lower frequencies, which gives brown noise a "damped” or
”soft” sound, unlike white and pink noise. It sounds like a
low roar resembling a waterfall or heavy rainfall. The value
of the fractal dimension, which is the corresponding visual
pixel descriptor, is directly mapped to the volume of the
brown noise. Additionally we make use of stereo panning to
support localisation as well as the estimation spatial propa-
gation of natural structures within the image easier.

3.5.2 Man-Made Structures

Regions belonging to man-made structures are acousti-
cally represented using two drum sound files, not interfering
with color sonification. The first is to represent the pixel
element referring to the mapped orientation o of the high-
est gradient. It is altered in pitch and speed depending on
whether «; is more 0° (horiz.) or 90° (vert.). If no gradient
is present, the drum sound is turned off. The second sound
first represents the presence of man-made structures per se.
If existing, it is also utilized to emphasize any additional
occurrence of line patterns. For this purpose, we employ re-
verberation. Note that the orientation of line patterns is not
sonified separately, as the user can guess such orientation by

assuming the same as such of the highest gradient, sonified
within the first drum rhythm. Again, we apply stereo pan-
ning to represent a man-made structure’s location in the
image.

3.5.3 Objects

The objects that were found by the object recognition
algorithm are sonified using familiar auditory icons, such as
the "meow” produced by a cat or the barking of a dog, so
no abstract memorization is required. The icon is played
whenever the user moves over a pixel region referring to a
specific object. Additionally, we use 3D sound positioning
to let the sound pass away slightly. Thus, we are able to
loop it while the user remains in the object region, so he can
shift attention to color or texture features.

4. SYSTEM DESIGN

The software system evolved into a Windows 7 stand-

alone framework, working internally as a finite state ma-
chine. Using Microsoft Speech API[20] the user is kept up
to date about the program’s current status. Sonification is
implemented via a set of parallel threads, sharing a Sound
Queue, a queue of pixel descriptors, which is processed se-
quentially. The framework comes with a so called sonifica-
tion folder, typically placed directly onto the desktop, which
allows the user to process any common jpeg image from the
internet or digital camera. For visually impaired users, the
program is designed to be controlled only by a few keys.
While operating, the program stays in stand-by state until
the user hits the space key. It then tries to load and pre-
process (Computation State) the first image found in the
sonification folder. Finally it switches to Sonification State,
allowing the user to explore the image interactively. A fur-
ther hit on the space key causes the program to switch back
to Computation State and prepare the next image from the
folder. Using an additional button, the user can select from
a set of combinations of pre-computed features to be soni-
fied.
The image pre-processing takes =~ 10 sec for man made
structure detection and post-processing (sections 3.1 - 3.3).
Object detection (section 3.4) takes &~ 15 seconds per object
class.

5. USER STUDIES

In a first set of experiments, we tested a congenital blind,
54 year old adult academic, who had acquired a geometric
understanding and sense of space. A second series of tests
was performed with 2 congenital blind 14 year old teenagers
from a local school. They had little geometric understand-
ing and sense of space. All participants had several hours
of experience with a previous system [2] 9 months before,
but received only a 10 minutes summary of the changes in
the sonification in the current system and almost no train-
ing time (approximately 5 minutes of personal interactive
exploration) before they started with the experiments. As
in [2], we utilized a Touch Screen for all tests (see Fig. 1).

5.1 Experiment I - Obj. Recognition by Color

The goal of the first experiment was to verify that the new
color sonification concept is as useful and informative as the
one presented in [2]. In a setup similar to [2], the task was
to identify objects by color only, while all other sonification



was deactivated. The stimuli were 40 photographs that show
one out of four elements (orange, tomato, apple and lemon)
in different positions. In each of 40 trials, one image was se-
lected at random and displayed at an arbitrary position on
the touch screen. The task of the participant was to find and
name the object. In the evaluation (Table 1 and Figure 5),
we focus on the time between the moment when the partici-
pant finds the object (which depends on where he starts and
is therefore not very informative), and the moment when he
names the object verbally to the experimenter. Chance level
(pure guessing) is 25% in this experiment. The results in Ta-
ble 1 state that the advanced color sonification approach is
as appropriate as the old one was. Further, all participants
reported that the advanced color sonification approach was
more comfortable, intuitive and discriminable, escpecially in
combination with the other sonifications.

5.2 Experiment II - Finding Scene Elements

The second experiment was about finding a set of scene
elements named by the experimenter. Table 2 shows the
elements to find and the cumulative times per participant
per trial for images (stimulus 1 - 5 in Figure 6). Only the
sonification of color and “man made” was activated. We only
sonified the existence of buildings, no highest gradients nor
gratings. Stereo panning was deactivated.

5.3 Experiment III - Scene Understanding

Participants were given 3 min. for each of the test images
(stimulus 6 - 8 in Figure 6) for exploration, without further
information. After that time they were to report what they
found in the current image and what their interpretation of
the scene was. Sonification was as in Exp. II. A qualitative
evaluation can be found in Table 4.

5.4 Experiment IV - Scene Understanding

Exp. IV was performed by the adult participant. The
setup was identical to Exp. III except that sonification of
natural regions was additionally turned on. This time, the
participant was given 10 images (stimulus 9 - 18 in Figure 6)
to explore. A qualitative evaluation can be found in Table
5. The participant was able to detect and interpret all im-
portant scene content for 8 out of 10 images. With the other
20%, image 10 and 15, he only mistook the water for sky,
which especially with picture 15 is hard to avoid. However,
the results seem very promising. Expressed in the words of
our adult participant:

What amazes me is that I start to develop some
sort of a spatial imagination of the scene within
my mind which really corresponds with what is
shown in the image.

5.5 Experiment V - Structure Categorization

Exp. V was performed by the adult participant. All soni-
fication modalities (color, roughness, man made structure
(incl. oriented lines and repetitive lines),Stereo Panning)
except object recognition were enabled. The participant was
given 2 min. for each image (stimulus 19 - 28 in Figure 6)
to explore the man made structures an to give an estima-
tion what kind of building type it might be. A qualitative
evaluation and comparison to what a seeing person might
estimate is given in Table 3. The participant was able to
interpret the types of 7 out of 10 buildings correctly.

Img | Categ. | Audible type categorization
19 Fortress| The flat compact building complex with

or tower in the lower right corner could be
Church | some sort of fortress .

20 Temple | A bigger compact upper part on some
or sort of pillars or windows. The upper

Church | part has some sort of bevel or graded
slope. Definitely a kind of temple or

gallery.
21 Light- | My first impression is a very small
house tower in the upper left corner. Might
also be a small cabin on top of massive
rock.
22 Hotel Definitely a very big sort of manor.

Many windows or pillars below the
flat orange roof. Maybe some sort of
gallery or castle.

23 Fortress| A building complex flat to the right,
with a tower on the left. Could be a

church.
24 Tower | Seems to be a delicate bright tower
or opened to its right.
Church
25 Hotel A flat red building from left to right and

equal in height. Above deep blue sky
and below deep blue water. Could be
some sort of hotel or holiday resort.
26 Temple | Small, very flat, bright and many win-
dows. Maybe some sort of bungalow.

27 Cabin | Small, in the right corner. Blue wa-
ter below and woods to the left. A red
cabin in the woods.

28 Light- | Seems to be the lighthouse again, on

house | first impression. Could be a cabin also.
On the left their is some sand-colored
structure.

Table 3: Experiment V: Qual. Eval. (comparison of
visual and audible building type estimations.)

6. CONCLUSION

All participants appreciated the system to be very intu-
itive, easy to understand and quick to learn, and they en-
joyed using it. The experimental results indicate that our
system could be very useful giving visually impaired per-
sons access to image content: Within a reasonable span of
time, they were able to get an overview of what is where
in the image, and to identify objects, given some context
information about the scene. It is now a realistic applica-
tion scenario that blind persons can explore personal photos,
perhaps together with a friend, and share memories about,
say, their vacation. This is due to our paradigm of direct
perception and interactive exploration using a very general
tool. In contrast, many everyday tasks, such as navigation,
are more likely to be the domain of special-purpose tools
and a faster, more automated procedure to derive specific
relevant information. One of our plans for the future is to
replace the expensive Touch Screen by a regular notebook’s
Touchpad.



Img

Part. Verbally Scene Estimation

Adult Lots of green parts, some small buildings within. At the top left is some kind of dark (uncolored) region,
maybe belonging to sky or some sort of rock-structure.

Teen. 1 | There seems to be no sky visible in the image, but lots of green natural regions, into which a few small
buildings are embedded.

Teen. 2 | There is a lot of green throughout the whole image, which is presumably a meadow or forest. Then there
are some small buildings surrounded by meadows. Sky could not be found in any part of the image.

Adult Green regions in the lower image part, probably some natural areas followed by a broad section of different
colored building structures. In the mid-section of the image there is some red building block with that is
surpassing the other building structures, presumably some sort of tower. The tower is surrounded by light
blue and white, which might be the sky.

Teen. 1 | There is a meadow in the lower part of the tmage followed by a building or buildings of various colors.
Those buildings are rather flat except for some sort of tower. The main upper part is covered in light blue,
supposedly sky.

Teen. 2 | There is some sort of meadow in the lower image part and blue sky in the upper part. In between there is
a different colored building section.

Adult There is a small building on the mid-right, which is yellow. A bit to the left above the yellow building there
is another building. Both buildings are surrounded by various colored non man made structures, which
could be a meadow with various bushes or trees illuminated by the sun. On the top left there is a glimpse
of light, maybe representing the sky

Teen. 1 | There is a yellow building. A green area beneath the building would presumably by some sort of meadow.
The different colored spots surrounding the meadow and the building might be colored trees.

Teen. 2 | There is a yellow building and another more white one. Below the white building is a green area, presumably
a meadow. There are yellow areas around and above the buildings, which could be trees.

Table 4: Experiment III: Qualitative Evaluation (verbal descriptions by participants)

Img

Verbally descripted Scene Estimation

There is a rather small, in parts yellowish, building in the midst of the top of an overgrown hill or meadow. The
grown region is colored in green, with yellow and red stains. The upper part is light blue, supposedly sky.

10

There is a big block-like slightly red building in the mid-section of the image. Below that building is some green stripe,
which might be a lawn. To the right the building seems to be embedded in some ascending rough natural green region
with yellow elements. Could be some hilly, sun-illuminated lawn, or trees, reflecting sunlight.

11

The lower part of the image from left to right is some intensive green area. There is a strong contrast in roughness on
the right from the smooth green area to a coarser green area in the mid-section. There is some light blue spot, which
will be sky, on the top right corner and some outstanding red colored building on the left.

12

There is a smaller band of light blue at the top across the image, supposedly sky. Then there are a few rather small
buildings. The rest seams to be natural regions, which besides green and yellow include also some red elements. There
is a dark blue spot in the lower left corner of the image, which will be some sort of water, such as a lake.

13

There are to buildings in the upper part of the image, one more to the left, the other more to the right. Both buildings
are separated by a more white region. This white region also surrounds the upper parts of both buildings, so it is
supposed to be sky. The left building has a slightly reddish roof. The whole lower part of the image is covered by some
green-yellowish natural regions, such as lawn or forests.

14

There are to separate or a whole building complex at the center part of the image. The complex seems to be embedded
in some sort of green-yellowish natural environment. The lower part is very dark and the the upper part of the image
s covered from left to right by some light blue, which will be the sky.

15

In the center of the image is some tower-alike building and a smaller one propagating to the right. The area below
the building seems to be green natural environment. The tower is surrounded by blue and white of varying intensities,
supposedly sky.

16

The lower part of the image is covered by some yellow-greenish area, supposedly meadows. From the left to the center
within the mid-section there are some red buildings with blue roofs. Directly below these buildings there is some
yellow band underlying such buildings from left to center. Right to the center building is some intensive green area,
presumably a forest. The upper part, completely covered in light blue, should be sky.

17

The mid-section of the image is covered by some building complex. The building is partly yellow, and green on
top. Below is a green and yellow region, probably lawn, and above and surrounding the building is blue and white,
presumably sky.

18

The lower part of the image from left to right is smooth green, such as a lawn. Then there is a deep blue stripe which
1s supposedly some sort of water, such as a river. Above the river is a very flat band of buildings, followed by some
green natural section. The top region is blue, presumably sky.

Table 5: Experiment IV: Qualitative Evaluation (as described by the participant)
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Figure 6: Image set for Exp. II - V, taken from the Corel Photo Database.
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