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Figure 1. On-Demand Creation of Procedural Cities in action. Create infinite streets, terrain and houses on the fly.

ABSTRACT

We report about our student project with the objective of a procedural generation of pseudo-random cities, streets and ter-
rains. The focus of the project is primarily the procedural modelling, real-time rendering and modelling on demand at 
run-time. This paper discusses the generation of terrain, road network, different approaches to build houses like random 
methods or shape grammars, and additional graphical effects. The framework is designed in away that a user without any 
previous knowledge is able to create infinite worlds on the fly as easy and interactively as possible while still having a 
wide influence on the appearance.
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1. INTRODUCTION

Cities are essential components of environments in computer games or films. A specific location is near by 
not  relevant,  but  the  visualization  of  fictional  but  preferably  realistic  scenes.  The  creation  of  such 
environments was so far the result of time-consuming manual modeling of one or more level designers. The 
trend of increasing size and more realistic cities, causes increasing modeling costs. To avoid problems like 
these, our student project group addresses to procedural generation of cities. The generation contains terrain, 
road network and buildings (Figure 1).  Our algorithm firstly generates and samples the visible part of the 
road network within a 2D plane (see Chapter 3).  The resulting 2D-coordinates are passed to our terrain 
module (see Chapter 4), where height values for all sampling points are calculated.  At last our algorithm is 
able to use different approaches, using randomized rules and shape grammars, to build houses placing them 
into appropriate areas (see Chapter 5). One of the fundamental principles of the project is the generation on 
demand, allowing the creation of ever new parts of the city on the fly as the user moves through the scene. 
Using  a  pseudo-random approach  for  each  object  within  the  scene,  depending  on  position  coordinates, 
guarantees a constant appearance of the city.  



2. RELATED WORK

Promising  ways  to  reconstruct  urban  models  but  quite  labor  intensive  are  methods  using  photographs 
[Debevec et al., 1996; Dick et al., 2001; Jepson et al., 1996; REALVIZ, 2002]  or videos and range scanning 
[Karner et al., 2001; Ribarsky et al., 2002; Teller, 2001]. 

The idea of modeling urban environments procedurally, including streets  and buildings, was recently 
explored by [Parish and Müller, 2001; Wonka et al. , 2003; Müller et. al., 2006; Chen et. al., 2008]. [Parish 
and Müller,  2001] first  note that  street  network is  the key to  creating large urban models,  presenting a 
solution based on L-Systems [Prusinkiewicz and Lindemayer, 1991], that were originally applied to simulate 
growth processes of plants. To enhance user-control of such street networks [Chen et. al., 08] provide an 
extended approach using tensor fields. 

In contrast to L-Systems shape grammars, as introduced by [Stiny, 1975], are more appropriate to create 
buildings as these grammars do allow a more powerful control using rules. [Parish and Müller, 2001] showed 
how to generate large urban environments where each building consists of simple mass models and shaders 
for  facade  detail.  [Wonka  et  al.,  2003]  demonstrated  how  to  generate  geometric  details  on  facades  of 
individual buildings. A combination of both techniques can be found in [Müller et. al.,2006].

Good overviews over the creation of urban environments are given by [Mitchell, 1990], about grammars 
in architecture in particular, as well as other notable works related to urban design [Hillier, 1996; Alexander 
et  al.  1977;  Gingroz  et.  al.,  2004].  Automatic  modeling  techniques  are  already  available  for  enhancing 
existing architectural models, e.g. using cellular textures [Legakis et al. 2001] and texture synthesis [Wei and 
Levoy, 2000].

Compared  to  previous  techniques,  the  aim  of  this  work  was  to  build  a  procedural  city  which  is 
constructed on-the-fly while the user moves through the scene. If the user is about to enter a new region, it 
will be automatically generated. Likewise, if the user has left a region for a given distance, the geometry will 
be discarded, and rebuilt on-the-fly in exactly the same way as before if the user decides to re-enter this part.

3. GENERATION OF STREETS

Figure 2. Left: Normal and Orthogonal street generation and parts of the original street structure of Manhattan; Right: 
Storage of subdivided polygons using tree structure.

Though being able to create infinite cities on-the-fly, our road network makes use of a base area, adjustable 
in  size.  Infinity  is  simulated  allowing the  user  to  walk out  of  the  area  re-entering  it  on the  other  side 
representing  another  part  of  our  city.  An  adjustable  seed  point  as  initialization  of  our  pseudo-random 
algorithms is used, which defines and guarantees the consistent appearance of our city, as the user walks 
forth and back between parts of the city.

The generation of the streets is restricted to a specified radius around the user position. Streets within that 
radius are generated while others outside might be postponed until the user moves into that area.

3.1 Street Division Algorithm

Recursive subdivision generates an amount of polygons from the initial base polygon. Because individual 
polygons do not share information, each edge of a polygon represents a half-street.. A complete street will be 
formed in combination with the edge of an adjacent polygon. To avoid incomplete polygons, each polygon, 
that lies even partially within range, is completely computed. 

Storage of the initial and all subdivided polygons is realized using a tree structure (Figure 2), where each 
polygon stores a pointer to its parent as well as its left and right child node. Whenever a polygon is divided 
we check whether further divisions are possible or whether the resulting polygons serve as leaf-nodes. Leaf-
polygons represent areas for positioning houses. To be as close as possible to reality our algorithm allows 
more than one building to be placed onto each polygon. Based on a user definable threshold it calculates 



further subdivisions of leaf-polygons, called parcel subdivisions, smaller areas within the leaf-polygon for a 
certain amount of houses. 

We implemented two different approaches to divide a polygon using an arbitrary straight or an orthogonal 
line, both based on a pseudo random algorithm.  Using this approach it is possible to create more planned 
street  networks  like  e.g.  downtown  New  York  as  well  as  more  evolved  road  systems  (Figure  2).  The 
algorithm guarantees that streets will not become too short when dividing polygons, based on a minimum 
length condition, adjustable by the user. Additionally, it is possible to create areas using different minimum 
length  conditions,  resulting  in  more  or  less  denser  road  networks,  to  simulate  e.g.  a  city  centre  and 
surrounding suburbs. 

3.2 Sampling the Road Network

Figure 3. Left: Calculation of corners and appropriate height values using linear combination; Middle: Sampling points 
lying on the grid (for illustration purposes the distance between grid lines is set to 1); Right: Inner polygon, scaled from 
the outer polygon, height values of the corners are mapped. Projection of sampling points and their height values.

The base terrain in our approach is based on a combination of street networks and a uniform grid for the 
height field and the occlusion culling and rendering. Height field generation is discussed in Section 4. 
The foundation of sampling the computed road network is a global, regular grid. The resolution of that grid is 
specified in advance by the user. The higher the resolution, the more sampling points are computed resulting 
in higher visual quality. On the other hand computing costs increase along with the resolution compromising 
real-time capabilities. 

3.2.1 Sampling Corners

To create an individual polygon (Figure 3, e.g. having 4 corners) within 3D space, guaranteeing a seamless 
and waterproof mesh structure of all adjacent polygons, as they are not directly linked during triangulation, 
we approximate the height value of each corner doing a bilinear interpolation of the height values of its four 
surrounding, nearest neighbour grid points (Figure 3). Therefore these four points as well as the appropriate 
interpolation weights can easily be calculated using the vertex position within the grid plane:
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The height values of these grid points are calculated utilizing our Terrain Generator (see Chapter 4). As a 
result, for each corner we get: 
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3.2.2 Sampling along the Edges

Calculating sampling points on the edges of our polygons again involves making sure not to create gaps at 
the transitions of polygons, as they are not linked and do not know anything about their neighbours. The 
presented algorithm verifies the compliance of this condition, sampling at positions on the grid. Therefore we 
define a line equation within grid plane, starting from a certain position ),( ooo yxP = on the grid, which has to 

be calculated at first: a
y

x
P

o

o *γ+





=  with  





−
−

=
12

12

yy

xx
a ; n,...,2,1=γ

To guarantee proceeding from point to point on the grid the gradient a is normalized in x respectively y 
direction within two calculation steps. The number of sampling points along a particular edge is given by the 
number of intersected grid points.



3.2.3 Building Streets, Sidewalks and Housing-areas

As the outer edges of the polygons represent the centrelines of the surrounding streets, we create new 
polygons to build a sidewalk and the borders of the final area to place the houses. To get streets that might 
rise or fall along the run but stay constant in profile we project the height values of the outer polygon lines 

onto newly created points, that define the inner polygon, based on a distance streetw , representing the width 

of a street. Before acceptance, we evaluate the projected sampling point to actually lie on the inner edge or 
outside its borders. If so, it is accepted as new point on the inner edge and rejected otherwise.

Intuitively, the inner polygon is formed by scaling the outer polygon lines according to streetw  (Figure 3). 

Due to this method we guarantee a uniform street structure that is built of two polygons, not knowing each 
other. Disadvantage of polygons not “knowing each other” might be the redundancy in calculating height 
values at neighbouring edges.

Figure 4. Left: Creating sidewalk and housing polygons; Right: Creation of the round sidewalks as parts of an 
approximated circle.

To create a sidewalk we define two additional polygons. One that equals the polygon, originally described as 

the inner polygon (Figure 5: defined using  4...1Q ),  using a constant sidewalkh ,  the height of our sidewalk 

(which is constant throughout our application)  to be added to all height values and another one created the 

same way as the previous inner polygon line, using a constant sidewalkw  as uniform width of our sidewalks 

(Figure 4). To create street scenes as realistic as possible, our algorithm constructs rounded sidewalk corners, 
which look much more natural than sharp borders (Figure 5).

Figure 5. Left: Adjacent half-streets; Right: Rounded sidewalk corners.

3.3 Triangulation of Streets and Terrain

Figure 6. Left: Triangulation of a segment – Starting from the corners find and select the best possible edge to triangulate; 
Right: Extraction (blue) and triangulation (red) of the ring and line-based triangulation of the remaining area based on the 

grid.

For triangulation, all  edges of an individual  polygon are divided at  their  corners to be used as separate 
segments. Due to the grid, the topology within a segment can easily be set. Regularly each segment contains 



different height values, so we cannot render them as planar polygons. To involve the different heights into 
rendering of streets, we triangulate each particular segment, using a fast greedy algorithm. 

As for the segments, a greedy algorithm is utilized for the inner areas of each polygon as well. Due to 
small angles in some of the polygons edges as well as sampling points lying on or too close to these edges we 
had to extend our implementation: We calculate a kind of border structure, called ring, to be triangulated at 
first, to be able to a do a line-based triangulation, accounting for the grid points (Figure 6). Therefore some 
points have to be moved or in some cases additional points must be inserted. 

4. CREATION OF LANDSCAPES

Figure 7. Left: two different results created by the terrain generator. Middle: Streets and Terrain based on the created 
terrain geometry; Right: Different iteration steps to use with our fluid simulation.

To not simply create flat cities we encountered different possibilities to build up a natural looking terrain 
geometry  to  embed  our  streets  and  cities  into.  Examining  several  approaches  like  pure  randomness, 
simulations of erosion and filtering, noise functions [Ebert et. al., 1998], we finally choose a fluid simulation 
[Lengyel,  2001;  GameDev.Net,  2003]  as  it  is  more  appropriate  for  the  creation  of  natural  looking 
environment under real-time conditions.

The algorithm starts, filling a field with pseudo random numbers, being treated like the surface of a fluid. 
Applying  fluid  simulation  equations  to  that  surface,  we  smooth  randomness,  gaining  realistic  looking 
structures. More iterations of those equations lead to smoother height fields (Figure 7). 

5. BUILDING HOUSES

Consistent with the road network or terrain geometry, we did not intend storing predefined models for the 
buildings. There is a need to create the structure, appearance and shape of buildings dynamically as they are 
to be drawn. As just a small region of our city is drawn, it is necessary to delete building geometry that is not 
seen any more as the user moves. 

To ensure reproducibility, which means that  exactly the same buildings must be created at the same 
position repeatedly, we use pseudo random numbers depending on the individual position within the grid 
plane. We implemented two separate approaches described below to address all problems. At this stage, it 
was not our intention to create highly detailed buildings, like the ones presented in [Parish and Müller, 2006], 
but  we  focused  on  on-the-fly  generation.  Nevertheless,  creating  more  complex  buildings  based  on  an 
extension of the building rules used within our framework may be straight forward.

5.1 XML Grammars

Our approach draws from the work on split grammar and control grammar presented by [Wonka, P. et al., 
2003]. Our grammar is developed on the basis of XML. This allows our system to be expanded by different 
grammars without the need for recompilation. We achieve this by the use of a data binding mechanism. The 
semantics of the grammar rules are defined in a schema file. The  CodeSynthesis XSD compiler is used to 
establish a mapping between the XML schema and the target programming framework. The result is a ready-
to-use domain-specific XML parsing framework.

The grammar itself is made up of grammar rules to specify the spatial layout of the buildings.  The 
assigned probabilities can be applied to choose between competing derivation rules. One can choose between 
transformation rules such as translation, rotation, scaling as well as push and pop operations to preserve a 
specific  transformation state.  By means of subdivision rules the overall  building scope can be split  into 



subparts to be derived in a different manner, e.g. alternating floor styles of a building. Furthermore the XML 
approach is also used to specify texture configurations, loaded at startup. At the end of the derivation process 
each scope is decomposed into its faces. According to their type corresponding textures are mapped on these 
faces. 

5.2 Area-Dependent Random Shapes

Figure 8. Left: Different types of parcel subdivisions; Middle: Quadric building areas can be split into different shapes; 
Right: Area filling as well as basic shape approaches allow generation terraces or alternating floors.

Our novel  area-dependent  random shapes approach  allows  us  to  change appearance  of  our  city  during 
runtime  accordingly  to  changing  the  random  seed  value.  Based  on  that  value  as  well  as  the  position 
coordinates, we define texture files of facades, roofs or other house components, like balcony or window 
frames as well as their shapes. This is a significant benefit compared to previous approaches, as the city will 
be generated interactively.
Shapes of houses in general depend on the areas they are build upon, since the parcel subdivisions, created by 
the road network may have different forms (Figure 8). In cases of triangles, we favor round buildings, like 
towers. In other cases, it is possible to generate a building filling an area or a quadratic basic shape building. 
Generating area filling houses or buildings with a circular platform involves the creation of walls, as single 
planes with a specific height and width as well as an iterative process separating walls into floors and floors 
into further tiles. Each tile may contain a window, balcony as well as just being part of concrete wall. Based 
on the random seed the algorithm further customizes any final tile, choosing out of predefined algorithms, 
e.g. as for defining the final form of a specific window.
The quadratic basic shape approach starts by defining the borders of the later building, computing a quad 
within the base area. In dependency of a pseudo random number, the algorithm select a L-, T-, H-, U- or quad 
basic shape (Figure 8). Shaped objects are split into single rectangles with different height, width and length 
values (called Basic Shapes). E.g. an H-shaped building contains seven basic shape objects. For each Basic 
Shape we compute the wall objects regarding whether walls are hidden by adjacent shapes. All wall objects 
will be put together to our house for further algorithms to tile them.
Both, area filling as well as basic shape approaches allow the generation of terraces and alternating floors, 
differing in width and height based on our random seed value (Figure 8). 

5.3 Plugin Management 

To be able to add more elements into our scenes like blend shapes or vegetation, without touching the code 
or varying the building rules, we created a plugin interface into our framework. Therefore using a pseudo-
random algorithm, the system decides whether a specific housing area would be build or remains free. The 
percentage of build and free areas can be controlled interactively. For each free area we create a dataset from 
its corners as well as the grid points lying within. The plugin has to implement three methods. One to verify 
that a particular plugin is written to use with our framework, one for initialization issues, which is called 
during  loading  the  plugin  and  a  render  method,  which  is  called  during  the  render  procedure  of  our 
application, utilizing the previous mentioned dataset. The plugin is compiled and linked as dynamic link 
library (dll). Plugins can be loaded automatically at startup or manual during runtime. 

6. VISUAL EFFECTS



Terrain and urban calculation is done on CPU. To enhance overall visual quality without losing too much 
performance for calculations, we embedded common computer graphics techniques such as  Environment  
Mapping, Shadow Mapping, Normal Mapping, Distance Fogging  as well  as for further  realism a shader 
controlled day – night period using the CG Shading language  [Fernando R. and  Kilgard M.J., 2003].  

Figure 9. Left: Environment Mapping using a dynamic Cube Map, rendered depending on the viewers position. Opposite 
buildings, streets and not occluded parts of the clouds texture are reflected within windows; Right: Simple Texture 

Mapping compared to Normal Mapping. 3D Impression depends on radiance of light.

Figure 10. Left: Shadow Mapping not only enhances image quality but also increases the depth impression of the scene. 
Right: Distance Fogging adds realism and character to the scene.

7. CONCLUSION

Strengths of our framework is first of all the ability to compute and build real infinite worlds on the fly, as 
the user moves through the scene, including algorithms to create realistic looking road networks embedded 
into a natural environment and an intelligent  creation and placement of buildings,  given the user a high 
interaction possibility as well as an as easy as possible overall control. Furthermore there is the modular 
structure, which allows an easy extension of the system as well as a simple exchange of different parts (e.g. 
the terrain generator) as well as the plugin structure that allows an easy import of blend shapes and other 
elements  to  extend  our  environment.  Besides  the  modular  structure,  due  to  using shape  grammars  it  is 
straight forward to build much more complex buildings or village styles.

Limitations are that our framework does not, as originally planned, create round streets and different 
street widths, which would enhance realism, as well as the redundant calculations during sampling due to the 
polygon structure.  To that point our framework does not make use of threads which might be helpful to 
compensate these redundant calculations and speed up overall computations of streets and houses. Another 
problem is,  that  houses intersect  with the terrain at their  bottom planes,  due to their current  positioning 
algorithms.

Possible  applications  could  be  the  entertainment,  especially  the  game  and  movie  industry  to  help 
decreasing modeling time – therefore it might be worthwhile to extend the modeling algorithms recognizing 
historical developments of cities as well as the effects of nature catastrophes. 
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