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Figure 1: Visualization of the principal components (PCs) for shape (left) and texture (right): Each pair of faces shows the effect of adding
and subtracting a multiple λ of a PC (Equations (1) and (2)). The numbers below each pair indicate the number i of the PC (1 - 50) and λ.

Abstract

This paper presents a psychophysical analysis of the discrimination
thresholds of human faces that are varied along different directions
in Face Space. Generated by a 3D Morphable Model, the stimuli
are frontal views of original laser scans that are modified in shape,
texture or both. Discrimination thresholds are then measured in
a four Alternative Forced Choice (4AFC) design and a staircase
method.

In Experiment 1, texture and shape are varied separately along a
set of principal component directions. For different components,
the results show a consistent pattern of high and low thresholds
across individual participants. We compare Mahalanobis distance,
Euclidean distance in face space, and 2D image differences as po-
tential predictors for human discrimination thresholds.

The goal of Experiment 2 is to investigate the interaction between
shape and texture. The stimuli include combined and separate vari-
ations of shape and texture in the 4AFC staircase setup, which are
analyzed in a within-subject paradigm. The results indicate that
participants rely on both shape and texture for their decision. The
experiments help to assess different potential models of the fusion
of shape and texture cues, and provide useful information for com-
puter graphics applications such as character design interfaces.

CR Categories: H.1.2 [Information Systems]: MODELS AND
PRINCIPLES—User/Machine Systems: Human information pro-

∗e-mail: nadineg@informatik.uni-siegen.de
†e-mail: blanz@informatik.uni-siegen.de

cessing; I.4.8 [Computing Methodologies]: IMAGE PROCESS-
ING AND COMPUTER VISION—Scene Analysis: Object recog-
nition, Shape; J.4 [Computer Applications]: SOCIAL AND BE-
HAVIORAL SCIENCES—Psychology

Keywords: Faces, Face Space, Distance Measures, Metric, Mor-
phing, Morphable Model, Shape Perception

1 Introduction

For several decades, researchers in computer graphics, computer
vision, psychology and neuroscience have investigated how human
faces can be represented in a computer or in the human visual sys-
tem (HVS), and how this information can be processed. An issue
that is closely related to the internal representation and the pro-
cessing mechanisms is the similarity measure or distance metric
between faces. In computer vision, it defines whether two faces are
found to be different individuals or whether they show the same per-
son in different imaging conditions. In graphics, the distance mea-
sure is important for character design interfaces, and it may serve
as an objective quality criterion for automated or manual 3D repro-



ductions of real actors’ heads in special effects. In psychology and
neuroscience, the similarity measure between faces may provide
useful insights into the neural representations and mechanisms in
the HVS. The goal of this paper is to use computer graphics stimuli
in psychophysical experiments to investigate the similarity measure
applied by human participants, and to compare these findings to dif-
ferent potential candidates of computational metrics.

The most straight-forward criterion for the similarity of faces would
be pixel-by-pixel image difference. However, this measure would
not distinguish between changes that are due to imaging conditions,
such as lighting or pose, and intrinsic differences in facial shape or
texture.

A more sophisticated metric would be based on a Face Space rep-
resentation, for example in terms of a 3D Morphable Model [Blanz
and Vetter 1999], which compares shapes and textures of corre-
sponding surface points of faces, such as the tips of the noses. The
simple Euclidean norm between shape and texture vectors would be
a robust distance measure that separates imaging parameters from
intrinsic facial characteristics.

Based on such a vector space representation of faces, a criterion
that is based on Principal Component Analysis (PCA) would take
into account the statistical distribution of faces. A PCA of a set
of samples (vectors) defines an orthogonal basis of eigenvectors
which are usually sorted in descending order according to the vari-
ance observed along these directions, so the first principal compo-
nents describe vector space directions along which the data have
the largest variance. Sirovich and Kirby [Sirovich and Kirby 1987]
showed that PCA is an efficient representation of high-dimensional
pictures of faces in a lower dimensional subspace. Based on this
method, Turk and Pentland developed a system for face recognition
[Turk and Pentland 1991]. Since then PCA has been used in many
face recognition algorithms. Additionally, numerous psychophysi-
cal studies investigated the psychological plausibility of PCA (e. g.
[Hancock et al. 1996]).

In PCA, it is assumed that the sample vectors of the training set are
drawn from a probability density function that takes the form of a
multidimensional normal distribution, so PCA essentially fits a nor-
mal distribution to the data. Vectors that have equal probability are
located on ellipsoids centered around the arithmetic mean, and the
geometric shape of these ellipsoids is defined by the eigenvectors
and the variances. The normal distribution defines a metric known
as Mahalanobis distance [Duda et al. 2001], which compensates
for the different variances along different axes. All vectors on the
equal-probability ellipsoids have equal Mahalanobis distance from
the mean. We investigate Mahalanobis distance in this paper as a
similarity measure between faces.

In smooth surface data, where adjacent surface points are more cor-
related than distant points, these first principal components tend to
capture large scale variations, such as overall size or overall bright-
ness changes in shape or texture data, while the higher order prin-
cipal components with small variances describe variations at a finer
scale (i.e. higher spatial frequency). It is interesting to find out how
the different principal components contribute to the distance mea-
sure applied by human observers. O’Toole et al. found that faces
are identified more reliably if principal components with smaller
variances are used for reconstruction [O’Toole et al. 1993]. In con-
trast, for the decision whether a face is male or female, global infor-
mation is sufficient: O’Toole et al. [O’Toole et al. 1993] discovered
that features related to the sex of a face are coded in the first prin-
cipal components (i.e. high variances). Similar results were found
for classification of age or race [Buchala et al. 2005].

Unlike these identification or classification experiments, we mea-
sure the perceived distance in a discrimination task and compare

the thresholds to Mahalanobis distance, Euclidean norm and image
difference. In particular, we are interested in the question whether
there are relationships between the empirical measurement of per-
ception thresholds and the statistically described Face Space, de-
termined by a PCA. The discrimination task measures facial sim-
ilarity on a rather small scale, because participants are very sensi-
tive to small changes in faces. We reduced the sensitivity by using
presentation times that are too short to scrutinize the images too
thoroughly.

Perceived similarity on a larger scale, i.e. for more distant pairs of
faces, can be obtained by direct similarity ratings by participants.
Such ratings were investigated in a number of experiments and
compared to a PCA based measure in Face Space [Scheuchenpflug
1998], [Tredoux 2002] [Hancock et al. 1997]. Results of these stud-
ies are basically that similarity of persons is determined to a certain
extent by their distance in Face Space, but experimental data of dif-
ferent participants vary considerably, so that it is difficult to obtain
reliable results. In our own pilot studies with ratings on substan-
tially different stimuli (original scans of individual faces), partici-
pants reported that they found it very hard to judge and rate sim-
ilarities. This may be due to the fact that their response may be
based on a variety of criteria, such as overall shape, facial details,
shape or texture, and that humans can consciously choose their pri-
orities, which makes the response more arbitrary than unconscious
responses would be.

The second experiment in our paper investigates how shape and tex-
ture contribute to the discriminability. This is done by measuring
thresholds for stimuli in which both shape and texture are changed
at the same time, and stimuli with modification of shape only or
texture only. We compare our results to different hypotheses how
shape and texture cues could be integrated in the HVS. Hancock et
al. [Hancock et al. 1996] asked how easy it would be to recognize
a certain person at a station to analyze which faces are easier to re-
member than others. In this work, they used stimuli with the origi-
nal shape as well as so called shape-free-faces. The shape-free faces
keep the original texture, but their shape is replaced by the average.
One result is that variations of shape do not correlate with the abil-
ity to recognize persons (more precisely: the false positives). Only
the texture seems to be important. The authors conclude that shape
and texture information are processed separately by the HVS.

O’Toole et al. [O’Toole et al. 1999] analyzed to what extent the
3D-shape-information and the 2D-texture-information contribute to
the recognition of faces. The main question of that work was how
these different contributions change under varying viewpoints. Re-
sults show that both components are equally important for good
performance in face recognition tasks. Interestingly, there are dif-
ferences between male and female faces. While the shape and tex-
ture information are equally useful for female faces, there are great
differences for male faces. Males with average textures are recog-
nized much better than females. Hill et al. [Hill et al. 1995] found
that the combination of shape and texture is also important for the
classification of sex and race.

2 Stimulus creation

The stimuli were created using a database of 200 laser scans of
faces represented in a 3D Morphable Face Model [Blanz and Vetter
1999]. Each face consists of a shape vector Sorig that contains x,
y and z coordinates of 75000 vertices on the facial surface, and a
texture vector Torig that contains the red, green and blue color of
each vertex.

For every trial, one of the original faces is picked randomly and
displayed along with a modified version. This modification is done



by adding shape or texture changes along principal component di-
rections. For shape, let si be the principal component eigenvec-
tor number i with a standard deviation σs,i (where σs,i ≥ σs,k if
i < k). For texture, let the eigenvectors be ti with standard devia-
tions σt,i. Modifications in shape are then achieved by

Smodif = Sorig + λs,i σs,i si (1)

and modifications in texture by

Tmodif = Torig + λt,i σt,i ti. (2)

In this notation, if we add multiples of the unit length eigenvectors
to a shape vector Sorig ,

Smodif = Sorig +
∑

i

λs,i σs,i si

the Mahalanobis distance (i.e. the variance-corrected distance) is

‖Smodif − Sorig‖2Maha =
∑

i

λ2
s,i

For texture, we obtain a similar result. In our stimuli, we modify
only one principal component at a time, so

‖Smodif − Sorig‖Maha = λs,i, ‖Tmodif − Torig‖Maha = λt,i.

In the experiments, we apply modifications to shape, texture or
both, and vary the principal component number i and the scaling
factors λ.

The 3D faces are rendered in a front view pose at a frontal illumi-
nation with additional ambient light. The skin reflection is mostly
diffuse, with only a mild specular component that does not produce
distinctive specular highlights. To avoid aliasing artefacts along the
silhouette, which would be giveaway cues of shape changes, we ap-
ply anti-aliasing by downsampling the images from a higher initial
resolution.

The stimuli are presented on a standard 20 inch color monitor. Each
face is about 5.5 cm wide and 7.5 cm high, and the distance from
the observer is about 60 cm. The rendering parameters are kept
constant throughout the experiment.

3 Experiment 1

The goal of this experiment is to measure thresholds for detecting
changes in human faces along different principal components in
shape and texture, and to find out how they relate to the standard
deviations along these directions.

3.1 Procedure

In each trial, four faces are shown simultaneously on the screen
at fixed positions (two rows and two columns). Three faces are
identical, and the fourth is modified as described in Section 2. The
identity of the original face and the position of the slightly modified
face are decided randomly. After a presentation time of three sec-
onds, grey rectangles replace the four faces to indicate the original
positions. In a four Alternative Forced Choice (4AFC) task, partic-
ipants select by mouse click which of the four positions showed the
face that was different from the others. After the click, the next four
faces are shown (Figure 1).

Presentation time is limited in order to prevent participants from
thorougly scrutinizing the images. Instead, we are interested in dis-
criminability on a greater scale based on more salient differences

Figure 2: Timeline of the experiment - After 3000 ms the four faces
are replaced by grey rectancles. The next trial starts after partici-
pants click on one of the rectangles.

and an overall impression. Due to the simultaneous presentation,
participants can look at the faces in any order.

In 24 experimental conditions, we investigate separate variations
along the following principal component directions:

s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s20, s50, (3)
t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t20, t50. (4)

For each condition, we run a staircase method [Gescheider 1997]
to determine the thresholds λ (Equation 1 and 2). In each trial,
one of the 24 conditions is selected randomly, and the next step
of the staircase method is performed for this condition. Due to the
random order, participants cannot adjust their strategy of inspection
on shape or texture changes or on specific types of modifications.
They would be able to do that if we ran the staircase experiments
for each condition separately.

Based on the response of the participant, the staircase method de-
termines the next stimulus value such that the threshold value is
measured precisely in a minimum number of trials. After a pilot
study, we chose a starting value of λ0 = 2.0 for all conditions. This
is approximately the mean of all thresholds of all principal com-
ponents. Starting with that value, λ is decreased if the participant
selects the correct face, and increased otherwise. For each condi-
tion, we perform 20 trials. The threshold is then computed as the
arithmetic mean of the turning points of λ.

The values for λ are increased and decreased on a logarithmic scale.
New values are determined by the function λ = λ0 ∗ αl, with α =
1.5. The exponent l defines the current level of the staircase and is
incremented or decremented in steps of 1. The stimuli for shape-
conditions are

Smodif = Sorig+λs,iσs,isi = Sorig+λ0α
ls,iσs,isi ls,i ∈ Z

(5)
and for texture

Tmodif = Torig+λt,iσt,iti = Torig+λ0α
lt,iσt,iti lt,i ∈ Z.

(6)

Initially, we tested only modifications along the positive directions
si or ti. As we verify later in Experiment 1b, the results for negative
directions (i.e. −si or −ti) are the same.

The experiment consists of 480 trials per participant (12 principal
components for shape and texture each, 20 staircase trials per con-
dition). The experiment takes about 40 min per person. Participants
were allowed to take a break once every 50 trials.



3.2 Participants

Our participants were 21 students and members of staff of our uni-
versity (7 females and 14 males). They were not paid or compen-
sated otherwise. Two participants already took part in a pilot study,
the others had no experience with psychophysical experiments.

3.3 Results

In this section, we analyze the thresholds, which are obtained by av-
eraging the values where the staircase of each individual condition
changes from increment to decrement or vice versa.

Figure 3: Mean thresholds (TH = λ) of the shape and texture com-
ponents (PC = i). The black error bars indicate standard errors,
the orange bars indicate standard deviations. Both for shape and
for texture, there is a slight positive trend.

Figure 3 shows the average thresholds pooled over all participants.
The diagrams show the thresholds λs,i and λt,i for principal com-
ponents i (horizontal axis), measured in units of standard devia-

tions. If Mahalanobis distance would explain human responses per-
fectly, we would expect a constant line in the diagrams.

Instead, there are significant differences in thresholds for different
i, and these are consistent across individual participants: For exam-
ple, the fifth principal in shape and the fourth principal component
in texture seem to be difficult to detect. We would have expected a
more smooth function, because the directions of the principal com-
ponents (unlike the standard deviations) do not need to be relevant
perceptually: in the extreme case where two directions have the
same standard deviations (degenerate eigenspace), the directions
of the two principal components that span this space are not even
mathematically well defined.

For shape, Mahalanobis distance seems to predict the general trend
of human thresholds over the entire range i = 1 through 50 quite
well, despite the slight increase in Figure 3. By linear regres-
sion, we found a slope of 0.051. In contrast, Figure 4 shows the
thresholds measured in terms of the Euclidean distance (L2 norm)
λs,i · σs,i (Note that all eigenvectors si have unit length.) In the
morphable model, Euclidean distance is the square root of the sum
of all squared vertex displacements in 3-dimensional space. For
shape, this curve falls off substantially (slope: −3.3 · 104). Our
results indicate that human shape thresholds are well adapted to the
statistics of faces.

Figure 4: Mean thresholds along shape and texture PCs in terms
of Euclidean distance (λ · σi). There is an overall negative trend
for shape, but less so for texture.

For texture, Figures 3 and 4 show that Mahalanobis distance does
not explain the threshold measurements better than Euclidean dis-



tance: Figure 3 shows a general increase in thresholds (slope:
0.056), so participants were more sensitive to the first principal
components (large scale changes) than to the fine scale changes
that occur with higher order principal components. In terms of
Euclidean distance, however, the thresholds are relatively constant
(slope: -97.5 on a significantly larger scale of distance values), with
some outliers. This finding is surprising to us not only because we
would have expected all thresholds to be adapted to the statistics of
faces. The first principal components describe coarse, low spatial
frequency changes in faces (Figure 1), some of which could also
be due to imaging and lighting effects. Therefore, we would have
expected that humans neglect these factors and focus more on fine,
invariant details. It may be due to the simultaneous presentation
in our experimental design that participants are highly sensitive to
these principal components.

3.4 Experiment 1b – Relevance of the sign of λ

In the previous experiment, we tested only positive stimulus val-
ues λ, based on the assumption that modifications of faces along a
certain axis in Face Space affect the same features of a face, so the
perceived difference should be independent of the direction. In fact,
if the modified faces look as natural as the original faces, a change
of sign is equivalent to changing the roles of original and modified
faces.

To verify if this assumption is true, we repeated the experiment in a
slightly different version. We tested the principal components 1, 3
and 20 for shape and texture, but with eigenvectors si and −si,
ti and −ti. The results indicate clearly that it is not important
for the value of a threshold in which direction we modify a face:
The differences between both directions lie within one standard de-
viation of the thresholds found in Experiment 1 (The full set of
measurements is available on our website http://mi.informatik.uni-
siegen.de).

4 Experiment 2

After testing separate modifications of shape and texture in the
first experiment, we investigated in the second experiment how the
thresholds change when both features are modified at the same time.
We considered three hypotheses:

1. Texture distance f(T ) and shape distance f(S) are added to
a single value of perceived distance.

f(S) + f(T ) > t (7)

2. Textures and shapes are processed separately, and faces are
perceived as different if one of the distance measures is above
its threshold:

f(S) > ts ∪ f(T ) > tt (8)

3. Both components are processed together in a joint distance
function.

f(S, T ) > t (9)

4.1 Procedure

In a within-subject design, we measure for each subject the sepa-
rate thresholds for shape and texture, as in Experiment 1, and in
combination. This allows us to compare the thresholds in the com-
bined conditions with those of the separate conditions without any
between-subject variation.

To reduce the number of conditions, the combinations are tested
only with a reduced number of principal components (i =

1, 2, 3, 7, 20) and only in combinations of si and ti for the same
number i. The choice of these combinations is arbitrary, because
there is no fundamental reason why the first principal component of
shape should interact with the first principal component of texture
more than with the second. Mathematically, there is no connection
between si and ti, because both PCAs are computed separately. We
still found these combinations reasonable to make sure that the face
modifications are on similar spatial frequency domains (both coarse
for s1, t1, and both fine for s20, t20). However, it would still be
interesting to investigate more combinations, such as s1 with t20.

Even though Experiment 1b demonstrated that the directions of
modifications do not matter, signs do matter in the combined con-
dition: For a fixed positive sign +s1, an additional change t1 is
different from −t1: depending on the relative sign of shape and
texture, their effects can either enhance each other or cancel each
other out in some respects (brightness changes due to shading and
texture changes in a given pixel). Therefore, we test both signs of
texture changes for a fixed sign of shape change. In addition, we
verify the findings of Experiment 1b by adding a condition with
−s3. Therefore, we investigate the following combinations:

Shape s1 s2 s3 −s3 s7 s20
Texture ±t1 ±t2 ±t3 ±t3 ±t7 ±t20

The procedure is the same as in Experiment 1 (4AFC setup, ran-
domly interleaved staircases with 20 trials per condition, presenta-
tion time is three seconds, followed by rectangles as replacements.)
The staircases for separate shape and texture conditions and for the
combined conditions are mixed, so for each trial, a random con-
dition is selected and the staircase for this condition is continued
by one step. In the combined conditions, the staircase levels li,±
for shape and texture are coupled (simultaneous increases and de-
creases), so

Smodif = Sorig + λs,i · αli,± σs,i si (10)

Tmodif = Torig ± λt,i · αli,± σt,i ti (11)

li,± ∈ Z,α = 1.2 (12)

We take the thresholds determined in Experiment 1 as starting val-
ues λs,i and λt,i:

PC 1 2 3 7 20
λs0 1.7 2.4 3.3 2.2 4.8
λt0 0.7 1.7 2.0 3.6 6.2

In Equations (10), (11), these values serve not only as starting val-
ues, but also as constant scaling factors between shape and texture
throughout the staircases (only the exponents li,± are varied.) As a
consequence, modifications in shape and texture should have equal
perceived contributions to the final stimuli, and their ratios are the
same for all trials and all participants.

4.2 Participants

In Experiment 2, 22 participants (5 females and 17 males) volun-
teered without payment or any other compensation. They were stu-
dents and members of staff of our university. Six of them already
participated in Experiment 1.

4.3 Results

The main focus of Experiment 2 is the interaction of shape and
texture. After the scaling of the shape and texture components
was already controlled, as described at the end of Section 4.1, we



rescale the thresholds again for the data analysis in order to elim-
inate between-subject variations: All thresholds for the combined
conditions are scaled in a within-subject paradigm to the individual
separate thresholds for each shape and texture component.

Figure 5: Thresholds for combined modification of shape and tex-
ture. The top part shows the histogram for the variable length. The
diagram on the bottom illustrates all measured, scaled thresholds.
The highlighted point marks the mean of all observations, the green
error bars indicate the standard deviations, the shorter orange bars
the standard errors.

All thresholds for all participants are shown in Figure 5 (bottom di-
agram). The position of each data point is determined by dividing
the shape threshold of the combined condition tscomb by the shape
threshold with was measured for this dimension i separately tssep

for this participant. This value is plotted as dshape = tscomb/tssep

on the horizontal axis. The value dtexture = ttcomb/ttsep for tex-
ture is calculated in the same way and is plotted on the vertical axis.

The top part of Figure 5 shows the histogram of the distances from
the origin. This distance is measured by:

lenght =
√
d2

shape + d2
texture

Note that if we were to plot the thresholds for separate modifica-
tions of shape or texture on this scale, we would obtain dshape = 1
and dtexture = 1 due to our normalization procedure (per partici-
pant and per component i.)

The mean distance from the original is 1.205 (σ = 0.286, σm =
0.0176). As we demonstrate below, this falsifies one of our hy-
potheses, while the decision between the two others remains un-
clear. The bottom part of Figure 5 additionally illustrates how the
decision boundaries can be interpreted with respect to the hypothe-
ses:

1. The dotted diagonal line between the points (dshape =
1, dtexture = 0) and (dshape = 0, dtexture = 1) represents
the assumption that distance measures for texture and shape
are added: dcombined = dshape + dtexture.

Faces are perceived as different if dcombined ≥ 1

If both components contribute equally, we obtain length =
0.7.

2. The orange box would be the expected decision boundary for
the decision rule

Faces different if (dshape ≥ 1) or (dtexture ≥ 1)

The unit square shape is a result of scaling. If texture and
shape thresholds contribute equally, the distance from the ori-
gin is length ≥ 1.4. In principle it is possible that we con-
centrate only on one of the components, shape or texture. That
would imply that only one condition is relevant in the equa-
tion above, while the other is ignored.

3. The circle illustrates the hypothesis that the shape vectors ~s
and texture vectors ~t are concatenated to a single vector ~x:

~s,~t→ ~x =

(
~s
~t

)
, dx =

√
d2

shape + d2
textur (13)

Then, the distance of the vector of the original face to the
vector of the modified face is compared to a threshold. Due to
scaling, the radius of the circle is length = 1.0:

Faces different if dx ≥ 1.0

From the observed thresholds in Figure 5, we can rule out the first
hypothesis, which states that texture and shape information is sim-
ply added: Only 5% of the thresholds have a distance length ≤
0.8. Due to hypothesis 1, 50% should be below

√
0.5.

More problematic are the results concerning the second and third
hypothesis, because the mean distance thresholds do not support
one of them clearly. Our results would be explained by an Lp norm
with p > 2. We can exclude the possibility that we only concentrate
on one component and ignore the other, because only 12.5% of the
points are above the shape-only or texture-only thresholds.

Even though our results cannot clearly support one of the two re-
maining models for cue integration, they give a quantitative empir-
ical description that may be a starting point for further research and
a useful basis for practical applications.

4.4 Analysis of image differences

In a post-hoc analysis, we computed the pixel-by-pixel image dif-
ferences that occur when the observed thresholds for shape or tex-
ture are applied to the average face (Figure 7). We analyzed the
conditions where shape and texture were modified separately.



For texture (left diagram), the fact that these values are almost con-
stant indicates that simple image distance is quite consistent with
the criterion applied by participants. In contrast, shape thresholds
decrease as i increases, which demonstrates that a simple 2D image
comparison mechanism does not explain the human responses: At
equal image differences, participants would be more sensitive to de-
tect the high-order principal components (low variance, high spatial
frequency deformations) than the first principal components.

5 General discussion

This paper investigates the distance measure in human face percep-
tion in a discrimination task.

We have presented a new experimental setup that combines stair-
case methods with a 4AFC task. We exploit the fact that stimuli are
computed on the fly during the experiment from a 3D Morphable
Model. We believe that this paradigm may be extended to address
a variety of other perceptual problems by varying other parameters
in the model. For example, these can be attributes such as gender or
body weight, which may be learned from labeled data [Blanz and
Vetter 1999].

Our findings support the hypothesis that the discrimination thresh-
olds applied by humans are, as far as shape modifications are con-
cerned, adapted to the statistics of human faces. In other words,
PCA can be used to predict the sensitivity of human observers for
shape changes. For texture, however, we found our results to be
more consistent with simpler distance measures such as Euclidean
distance in texture space, or simple image difference. These two
measures are closely related if the faces are displayed at the same
geometrical parameters. If image conditions vary, we would expect
that only Euclidean texture distance would explain our experimen-
tal data well.

We found that some principal components are consistently per-
ceived with high sensitivity, while others are more difficult to see.
This pattern generalizes across different participants and is unex-
pected because the directions of principal component directions
may be determined by the specifics of the statistical distribution
of training data, and it is very problematic to attach any perceptual
meaning to those directions. Still, it seems that some of them con-
tain facial attributes that we are very sensitive for. For example,
the fourth principal component of texture captures some of the dark
chin color due to stubbles in male faces. Note that all of the male
individuals in the database were asked to shave before scanning,
but still some had short stubbles. The shape thresholds are compar-
atively low for the fourth and seventh PC which both code the width
of a face. It seems that the HVS is more sensitive to such specific
attributes than to others.

We have also analyzed how shape and texture cues are integrated
in the HVS. Our data show that participants rely on both cues, and
that they do not simply add the distances of both to a combined
criterion. However, our results did not clearly support either of two
additional hypothesis about how the shape and texture information
could be integrated. We assume that shape and texture information
are integrated and analyzed in a joint distance metric, but this metric
seems to be more complex than just the distance of concatenated
vectors, which would be equivalent to a sum of squares of shape
and texture differences.

Our results verify the assumption that the sign of the direction
of modifications (adding or subtracting multiples of eigenvectors)
does not affect the sensitivity. For combinations of shape and tex-
ture, we would have expected differences at least for some principal
components. Especially for the first principal component, which
represents information about the gender of a face, differences are

likely. The first shape component varies in size and the first texture
component represents skin complexion. A huge, dark face stands
for male and small, bright faces for females. The combination can
therefore be in the same or opposite sense according to gender, so
that direction might matter. The analysis of our data showed that
direction is not relevant for the combined conditions (Figure 6).

Figure 6: Comparison of the distances in positive and negative
direction of the texture.

Figure 7: Image difference when the average face is modified by
a magnitude that corresponds to the thresholds from Experiment
2 along different PCs. The diagram shows mean square distances
between the r,g,b- values of the original image and the modified
image.

In computer graphics, our results can be used in interactive tools
for character design or for crowd generation to create a set of dis-
tinctive faces. In many fields in computer graphics, we are facing
the problem to assess the quality of virtual reproductions of real
faces, for example in face reconstruction from images, or in man-
ual reproductions that are used in special effects. A good criterion
for perceptual similarity may help to optimize the results of such
projects. Getting a better understanding of the distance metric of
human faces contributes both to basic research in psychology and
neuroscience, and to practical applications in graphics and anima-
tion.
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