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Abstract. In this paper we present a method to derive 3D shape and
surface texture of a human face from a single image. The method draws
on a general flexible 3D face model which is “learned” from examples of
individual 3D-face data (Cyberware-scans). In an analysis-by-synthesis
loop, the flexible model is matched to the novel face image.

From the coloured 3D model obtained by this procedure, we can gen-
erate new images of the face across changes in viewpoint and illumina-
tion. Moreover, nonrigid transformations which are represented within
the flexible model can be applied, for example changes in facial expres-
sion.

The key problem for generating a flexible face model is the computation
of dense correspondence between all given 3D example faces. A new cor-
respondence algorithm is described which is a generalization of common
algorithms for optic flow computation to 3D-face data.

1 Introduction

Almost an infinite number of different images can be generated from the human
face. Any system that tries to analyse images of faces is confronted with the
problem of separating different sources of image variation. For example, in order
to identify a face of a person, the system must be able to ignore changes in
illumination, orientation and facial expression, but it must be highly sensitive to
attributes that are characteristic of identity. One approach to solving this prob-
lem is to transform the input image to a feature vector which is then compared to
stored representations. In these ‘bottom-up’ strategies, the crucial problem is to
choose appropriate features and criteria for comparison. An alternative approach
is to build an explicit model of the variations of images. An image analysis is
performed by matching an image model to a novel image, thereby coding the
novel image in terms of a known model.

This paper focuses on the analysis and synthesis of images of a specific object
class — that is on images of human faces. A model of an entire object class, such
as faces or cars, with all objects sharing a common similarity, can be learned
from a set of prototypical examples. Developed for the analysis and synthesis of
images of a specific class of objects, it must solve two problems simultaneously:

— The model must be able to synthesize images that cover the whole range of
possible images of the class.



— Matching the model to a novel image must be possible, avoiding local min-
ima.

Recently, two-dimensional image-based face models have been constructed
and applied for the synthesis of rigid and nonrigid face transformations [1, 2, 3].
These models exploit prior knowledge from example images of prototypical faces
and work by building flexible image-based representations (active shape models)
of known objects by a linear combination of labeled examples. These representa-
tions are used for image search and recognition or synthesis [3]. The underlying
coding of an image of a new object or face is based on linear combinations of
prototypical images in terms of both two-dimensional shape (warping fields),
and color values at corresponding locations (texture).

For the problem of synthesizing novel views to a single example image of a
face, we have developed over the last years the concept of linear object classes
[4]. This image-based method allows us to compute novel views of a face from
a single image. On the one hand, the method draws on a general flexible image
model which can be learned automatically from examples images, and on the
other hand, on an algorithm that allows this flexible model to be matched to
a novel face image. The novel image can now be described or coded by means
of the internal model parameters which are necessary to reconstruct the image.
The design of the model also allows new views of the face to be synthesized.

In this paper we replace the two-dimensional image model by a three-dimen-
sional flexible face model. A flexible three-dimensional face model will lead on
the one hand to a more efficient data representation, and on the other hand to
a better generalization to new illumination conditions.

In all these techniques, it is crucial to establish the correspondence between
each example face and a single reference face, either by matching image points in
the two-dimensional approach, or surface points in the three-dimensional case.
Correspondence is a key step posing a difficult problem. However, for images of
objects which share many common features, such as faces all seen from a single
specific viewpoint, automated techniques seem feasible. Techniques applied in
the past can be separated in two groups, one which establishes the correspon-
dence for a small number of feature points only, and techniques computing the
correspondence for every pixel in an image. For the first approach models of
particular features such as the eye corners or the whole chin line are developed
off line and then matched to a new image [3]. The second technique computes
the correspondence for each pixel in an image by comparing this image to a
reference image using methods derived from optical flow computation[2, 5].

In this paper, the method of dense correspondence, which we have already
applied successfully to face images [4], will be extended to the three-dimensional
face data. Firstly, we describe the flexible three-dimensional face model and
compare it to the two-dimensional image models we used earlier. Secondly we
describe an algorithm to compute dense correspondence between individual 3D
models of human faces. Thirdly we describe an algorithm that allows us to match
the flexible face model to a novel image. Finally we show examples for synthesiz-
ing new images from a single image of a face and describe future improvements.



2 Flexible 3D face models

In this section we will give a formulation of a flexible three-dimensional face
model which captures prior knowledge about faces exploiting the general simi-
larity among faces. The model is a straightforward extension of the linear object
class approach as described earlier[4]. Exploiting the general similarity among
faces, prototypical examples are linked to a general class model that captures
regularities specific for this object class.

Three-dimensional models

In computer graphics, at present the most realistic three-dimensional face rep-
resentations consist of a 3D mesh describing the geometry, and a texture map
capturing the color data of a face. These representations of individual faces
are obtained either by three-dimensional scanning devices or by means of pho-
togrammetric techniques from several two-dimensional images of a specific face
[6, 7]. Synthesis of new faces by interpolation between such face representation
was already demonstrated in the pioneering work of Parke (1974). Recently the
idea of forming linear combinations of faces has been used and extended to a
general three-dimensional flexible face model for the analysis and synthesis of
two-dimensional facial images [1, 4].

Shape model: The three-dimensional geometry of a face is represented by a
shape-vector S = (X1,Y1, Z1, Xo, ....., Yn, Z)T € 3™, that contains the X,Y, Z-
coordinates of its n vertices. The central assumption for the formation of a flex-
ible face model is that a set of M example faces S; is available. Additionally,
it is assumed that all these example faces S; consist of the same number of n
consistently labeled vertices, in other words all example faces are in full corre-
spondence (see next section on correspondence). Usually this labeling is defined
on an average face shape, which is obtained iteratively, and which is often de-
noted as reference face S,.r. Additionally, all faces are assumed to be aligned
in an optimal way by rotating and translating them in three-dimensional space.
Under this assumptions a new face geometry S,;,4e; can be generated as a linear
combination of M example shape-vectors S; each weighted by ¢;

M
Smodet = »_Ci Si - (1)
i=1

The linear shape model allows for approximating any given shape S as a
linear combination with coefficients that are computed by projecting S onto the
example shapes S;. The coefficients ¢; of the projection then define a coding of
the original shape vector in this vector space which is spanned by all examples.
Texture model: The second component of a flexible three-dimensional face or
head model is texture information, which is usually stored in a texture map. A
texture map is simply a two-dimensional color pattern storing the brightness or
color values (ideally only the albedo of the surface). This pattern can be recorded
in a scanning process or generated synthetically.
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Fig. 1. Three-dimensional head data represented in cylindrical coordinates result
in a data format which consists of two 2D-images. One image is the texture map
(top right), and in the other image the geometry is coded (bottom right).

A wu,v coordinate system associates the texture map with the modeled sur-
face. The texture map is defined in the two-dimensional u,v coordinate system.
For polygonal surfaces as defined by a shape vector S, each vertex has an assigned
u, v texture coordinate. Between vertices, u, v coordinates are interpolated.

The linear texture model, described in [1] starts from a set of M example face
textures T;. Equivalent to the shape model described earlier, it is assumed that
all M textures T; consist of the same number of n consistently labeled texture
values, that is all textures are in full correspondence. For texture synthesis linear
models are used again. A new texture T,,,q4¢; is generated as the weighted sum
of M given example textures T; as follows

M
Trodet = Z biT’i7 (2)
i=1

Equivalent to the linear expansion of shape vectors (equation 1), the linear
expansion of textures can be understood and used as an efficient coding schema
for textures. A new texture can be coded by its M projection coefficients b; in
the ‘texture vector space” spanned by M basis textures.

3 3D Correspondence with Optical Flow

In order to construct a flexible 3D face model, it is crucial to establish correspon-
dence between a reference face and each individual face example. For all vertices
of the reference face, we have to find the corresponding vertex location on each



face in the dataset. If, for example, vertex j in the reference face is located on the
tip of the nose, with a 3D position described by the vector components X, Y;, Z;
in S;¢f, then we have to store the position of the tip of the nose of face ¢ in the
vector components X;,Y;, Z; of S;. In general, this is a difficult problem, and
it is difficult to formally specify what correct correspondence is supposed to be.
However, assuming that there are no categorical differences such as some hav-
ing a beard and others not, an automatic method is feasible for computing the
correspondence.

The key idea of the work described in this paragraph is to modify an exist-
ing optical flow algorithm to match points on the surfaces of three-dimensional
objects instead of points on 2D images.

Optical Flow Algorithm

In video sequences, in order to estimate the velocities of scene elements with
respect to the camera, it is necessary to compute the vector field of optical flow,
which defines the displacements (dz,dy) = (2 — x1,¥2 — y1) between points
p1 = (z1,y1) in the first image and corresponding points ps = (z2,y2) in the
following image.

A variety of different optical flow algorithms have been designed to solve
this problem (for a review see [8]). Unlike temporal sequences taken from one
scene, a comparison of images of completely different scenes or faces may violate
a number of important assumptions made in optical flow estimation. However,
some optical flow algorithms can still cope with this more difficult matching
problem.

In previous studies [4], we built flexible image models of faces based on cor-
respondence between images, using a coarse-to-fine gradient-based method [9]
and following an implementation described in [10]:

For every point z,y in an image I(z,y), the algorithm attempts to minimize
the error term E(z,y) = } p(, ) (le0z + L0y — 8I)? for éz,dy, with I, I,
being the spatial image derivatives and 67 the difference of grey-levels of the two
compared images. The region R is a 5x5 pixel neighbourhood of (z,y). Solving
this optimization problem is achieved in a single iteration.

Since this is only a crude approximation to the overall matching problem,
an iterative coarse-to-fine strategy is required. The algorithm starts with an
estimation of correspondence on low-resolution versions of the two input images.
The resulting flow field is used as an initial value to the computation on the next
higher level of resolution. Iteratively, the algorithm proceeds to full resolution.

In our applications, results were dramatically improved if images on each level
of resolution were computed not only by downsampling the original (Gaussian
Pyramid), but also by band-pass filtering (Laplacian Pyramid). The Laplacian
Pyramid was computed from the Gaussian pyramid adopting the algorithm pro-
posed by [11].

Three-dimensional face representations.

The adaptation and extension of this optical flow algorithm to face surfaces in
3D is straightforward due to the fact that these two-dimensional manifolds can
be parameterized in terms of two variables: In a cylindrical representation (see



figure 1), faces are described by radius and color values at each angle ¢ and height
h. Images, on the other hand, consist of grey-level values in image coordinates
z,y. Thus, in both cases correspondence can be expressed by a mapping C :
2 — R? in parameter space.

In order to compute correspondence between different heads, both texture
and geometry were considered simultaneously. The optical flow algorithm de-
scribed above had to be modified in the following way. Instead of comparing
scalar grey-level functions I(z,y), our modification of the algorithm attempts to
find the best fit for the vector function

radius(h, ¢)

_ | redn, ¢)
B0 =1 green(h, ¢)
blue(h, @)

in a norm

||(radius, red, green, blue) T ||> = w - radius® + w, - red” + ws - green® 4+ w - blue®.

The coefficients w; ...w4 correct for the different contrasts in range and color
values, assigning approximately the same weights to variations in radius as to
variations in all color channels taken together.

Radius values can be replaced by other surface properties such as Gaussian
curvature or surface normals in order to represent the shapes of faces more
appropriately.

The displacement between corresponding surface points is expressed by a
correspondence function

Interpolation in low-contrast areas.

It is well known that in areas with no contrast or with strongly oriented intensity
gradients, the problem of optical flow computation cannot be uniquely solved
based on local image properties only (aperture problem). In our extension of
the algorithm to surfaces of human faces, there is no structure to define correct
correspondence on the cheeks, along the eyebrows and in many other areas, and
indeed the method described so far yields spurious results here. While these
problems might remain undetected in a simple morph between two faces, they
still have significant impact on the quality of the flexible face model.

The ambiguities of correspondence caused by the aperture problem can be
resolved if the flow field is required to be smooth. In a number of optical flow
algorithms, smoothness constraints have been implemented as a part of an iter-
ative optimization of correspondence [12, 13, 14].

In our algorithm, smoothing is performed as a separate process after the
estimation of flow on each level of resolution. For the smoothed flow field
(6h'(h, §),d¢' (h, d)), an energy function is minimized using conjugate gradient
descent such that on the one hand, flow vectors are kept as close to constant as
possible over the whole domain, and on the other hand as close as possible to



the flow field (6h(h, @),0¢(h, ¢)) obtained in the computation described above.
The first condition is enforced by quadratic potentials that increase with the
square distances between each individual flow vector and its four neighbours.
These interconnections have equal strength over the whole domain. The second
condition is enforced by quadratic potentials that depend on the square distance
between (0h'(h,@),d¢'(h,¢)) and (0h(h,d),d¢(h,d)) in every position (h, ).
These potentials vary over the (h, ¢) domain: If the gradient of colour and radius
values, weighted in the way described above, is above a given threshold, the
coupling factor is set to a fixed, high value in the direction along the gradient,
and zero in the orthogonal direction. This allows the flow vector to move along
an edge during the relaxation process. In areas with gradients below threshold,
the potential is vanishing, so the flow vector depends on its neighbours only.
With our choice of the threshold, only 5% of all flow-vectors were set free in the
low-resolution step, but 85% in the final full-resolution computation.

4 Matching the flexible 3D model to a 2D image

Based on an example set of faces which are already in correspondence, new 3D
shape vectors S™°?! and texture maps T™°%! can be generated by varying the
coefficients ¢; and b; in equations (1) and (2). Combining model shape and model
texture results in a complete 3D face representation which can now be rendered
to a new model image I™°?!. This model image is not fully specified by the
model parameters ¢; and b;, but it also depends on some projection parameters
p; and on the parameters r; of surface reflectance properties and illumination
used for rendering. For the general problem of matching the model to a novel
image I™°v®! we define the following error function

Ble,b,p.x) = 3 32 [ @,0) = I (z,9)]’ @

mﬂy

where the sum is over all pixels (z,y) in the images, I"°"® is the novel image
being matched and 1™ is the current guess for the model image for a specific
parameter setting (c, b, p,r). Minimizing the error yields the model image which
best fits the novel image with respect to the Ly norm.

However, the optimization of the error function in equation (4) is extremely
difficult for several reasons. First, the function is not linear in most of the pa-
rameters, second, the number of parameters is large (> 100) and additionally,
the whole computation is extremely expensive since it requires the rendering of
the three-dimensional face model to an image for each evaluation of the error
function.

In this paper we will simplify the problem by assuming the illumination
parameters r and also the projection parameters p, such as viewpoint, are known.
This assumption allows us to reduce the amount of rendering and also to use
image modeling techniques developed earlier [15, 16]. By rendering images from
all example faces under fixed illumination and projection parameters, the flexible



3D model is transformed into a flexible 2D face model. This allows us to generate
new model images depicting faces in the requested spatial orientation and under
the known illumination. After matching this flexible 2D model to the novel image
(see below), the optimal model parameters are used within the flexible 3D model
to generate a three-dimensional face representation which best matches the novel
target image.

4.1 Linear image model

To build the flexible 2D model, first we render all 3D example faces under the
given projection and illumination parameters to images Iy, I1,...,Ia. Let I
be the reference image, and let positions within I be parameterized by (u,v).
Pixelwise correspondences between [y and each example image are mappings
s; : R? = R? which map the points of Iy onto I, i.e. s;j(u,v) = (z,y), where
(x,y) is the point in I; which corresponds to (u,v) in Iy. We refer to s; as a
correspondence field and interchangeably as 2D shape vector for the vectorized
I;.

The 2D correspondence s; between each pixel in the rendered reference image
Iy and its corresponding location in each rendered example image I;, can be
directly computed from the projection P of the differences of 3D shapes between
all 3D faces and the reference face, PS; — PSy.

Warping image I; onto the reference image Iy, we obtain t; as:

t;(u,v) = I osj(u,v) & Ij(z,y) =t;o sj_l(w,y).

So, {t;} is the set of shape-normalized prototype images, referred to as texture
vectors. They are normalized in the sense that their shape is the same as the
shape of the chosen reference image.

The flexible image model is the set of images I"°%! parameterized by

c=[co,C1,---y¢m],b=[bo,b1,...,bp] such that
M M

pmodel g (Z is;) = ijtj. (5)
i=0 7=0

The summation Ef\io ¢;s; constrains the 2D shape of every model image to
be a linear combination of the example 2D shapes. Similarly, the summation
ij\io b;t; constrains the texture of every model image to be a linear combination
of the example textures.

For any values for ¢; and b;, a model image can be rendered by computing
(z,y) = Zfio ¢;isi(u,v) and g = ij\io b;t;(u,v) for each (u,v) in the reference
image. Then the (x,y) pixel is rendered by assigning I"°%¢!(x,y) = g, that is by
warping the texture into the model shape.



4.2 Matching a 2D face model to an image

For matching the flexible image model to a novel image we used the method
described in [15, 16]. In 2D, the error function as defined in equation (4) is
reduced to a function of the model parameters ¢ and b.

Ble,b) = 5 3 [ a,y) ~ I (z, )]’
z.y
In order to compute I™°?! (see equation (5)) the shape transformation (3 ¢;s;)
has to be inverted or one has to work in the coordinate system (u,v) of the
reference image, which is computationally more efficient. Therefore, the shape
transformation (given some estimated values for ¢ and b) is applied to both
Imovel and I™°4¢! From equation (5) we obtain

M M
1
E =331 o (Y essi(u,v) = Y bit;(u,v)]*.
u,v =0 j=0

Minimizing the error yields the model image which best fits the novel image
with respect to the Ly norm. The optimal model parameters ¢ and b are found
by a stochastic gradient descent algorithm [17], a method that is fast and has a
low tendency to be caught in local minima.

The robustness of the algorithm is further improved using a coarse-to-fine
approach [11]. In addition to the textural pyramids, separate resolution pyramids
are computed for displacement fields s in = and y.

Separate matching of facial subregions.

In the framework described above, the flexible face model has M degrees of
freedom for texture and M for shape, if M is the number of example faces. The
number of degrees of freedom can be increased by dividing faces into independent
subregions which are optimized independently [18], for example into eyes, nose,
mouth and a surrounding region. Once correspondence is established, it is suffi-
cient to define these regions on the reference face. In the linear object class, this
segmentation is equivalent to splitting down the vector space of faces into inde-
pendent subspaces. The process of fitting the flexible face model to given images
is modified in the following ways: First, model parameters ¢ and b are estimated
as described above, based on the whole image. Starting from these initial values,
each segment is then optimized independently, with its own parameters ¢ and
b. The final 3D model is generated by computing linear combinations for each
segment, separately and blending them at the borders according to an algorithm
proposed for images by [11, 19] .

5 Novel view synthesis

After matching the 2D image model to the novel image, the 2D model parameters
c and b can be used in the three-dimensional flexible face model as defined in
equations (1) and (2). The justification of this parameter transfer is discussed
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SMILE = EXPRESSION2 ~ EXPRESSION1
Fig. 2. Correspondence between faces allows us to map expression changes from one
face to the other. The difference between the two expressions in the top row is mapped

on the left face in the lower row multiplied by a factor of 1 (center) or by 1.4 (lower
right)

in detail under the aspect of linear object classes in [4]. The output of the 3D
flexible face model is an estimate of the three-dimensional shape from the two-
dimensional image. Since this result is a complete 3D face model, new images
can be rendered from any viewpoint or under any illumination condition.

The correspondence between all faces within this flexible model allows for
mapping non-rigid face transitions ‘learned’ from one face onto all other faces
in the model. In figure 2, the transformation for a smile is extracted from one
person and then mapped onto the face of another person. Computing the cor-
respondence between two examples of one person’s face, one example showing
the face smiling and the other showing the face in a neutral expression, results
in a correspondence field or deformation field which captures the spatial dis-
placement for each vertex in the model according to the smile. This expression
specific correspondence field is formally identical to the correspondence fields
between different persons described earlier. Such a ‘smile-vector’ can now be
added or subtracted from each face which is in correspondence to one of the
originals, making a neutral looking face more smily or giving a smiling face a
more emotionless expression.

6 Data set

We used a 3D data set obtained from 200 laser scanned (CyberwareT™) heads
of young adults (100 male and 100 female).
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Fig. 3. Three-dimensional reconstruction of a face from a single two-dimensional image
of known orientation and illumination. The test image is generated from an original
3D scan (top) which is not part of the training set of 100 faces. Using the flexible face
model derived from the training set, the test image can be reconstructed by optimizing
parameters in a 2D matching process. These model parameters also describe the esti-
mated 3D structure of the reconstructed head. The bottom row illustrates manipulations
of surface properties, illumination and facial expression (left to right).




The laser scans provide head structure data in a cylindrical representa-

tion, with radii of surface points sampled at 512 equally-spaced angles, and at
512 equally spaced vertical distances. Additionally, the RGB-color values were
recorded in the same spatial resolution and were stored in a texture map with
8 bit per channel. All faces were without makeup, accessories, and facial hair.
After the head hair was removed digitally (but with manual editing), individual
heads were represented by approximately 70000 vertices and the same number
of color values.
We split our data set of 200 faces randomly into a training and a test set, each
consisting of 100 faces. The training set was used to ‘learn’ a flexible model. From
the test set, images were rendered showing the faces 30° from frontal, and using
mainly ambient light. The image size used in the experiments was 256-by-256
pixel and 8 bit per color channel.

ORIGINAL NO SEGMENTATION SEGMENTATION

Fig.4. In order to recover more of the characteristics of a test image (left), after
optimizing model parameters for the whole face (center), separate sets of parameters
are optimized for different facial subregions independently (right). As subregions, we
used eyes, nose, mouth and the surrounding area. Improvements can be seen in the
reconstructed shape of lips and eyes.

7 Results

Correspondence between all 3D example face models and a reference face model
was computed automatically. The results were correct (visual inspection) for
almost all 200 faces, in only 7 cases obvious correspondence errors occurred.

Figure 3 shows an example of a three-dimensional face reconstruction from
a single image of known orientation and illumination. After matching the model
to the test image, the model parameters were used to generate a complete three-
dimensional face reconstruction. Figure 3 illustrates the range of images that can
be obtained when a full 3D head is reconstructed, including both manipulations
of viewpoint, surface material or illumination, and changes of internal properties
such as facial expression.

At present, evaluation of the three-dimensional face reconstructions from
single images is only based on visual inspection. Out of 100 reconstructions, 72



faces were highly similar and often hard to distinguish from the original in a 30°
view. In 27 cases, persons were still easy to identify, but images displayed some
differences, for example in the shape of cheeks or jaw. Only one reconstruction
showed a face clearly unlike the original, yet a face that could very well exist.

We rated the example shown in figure 3 as highly similar, but within this
category it is average. While the reconstructed head appears very similar to the
original image in a 30° view, it is not surprising to notice that front and profile
views reveal a number of differences.

Since texture vectors in the flexible 2D face model only code points that
are part of the face, no particular background colour is specified. Performance
should be roughly the same for any background that produces clear contours,
and indeed results are almost identical for test images with black and light brown
backgrounds.

The flexible model approach can also be applied to faces that are partially oc-
cluded, for example wearing sunglasses, or for persons with unusual features such
as beards or moles. In each iteration of the matching process, contributions are
ignored for those pixels which have the largest disagreement in color values with
respect to the original image [15]. Along with a relatively stable reconstruction
of all visible areas, the system yields an estimate of the appearance of occluded
areas, based on the information available in the image and the internal structure
of the face model (figure 5). Moreover, the approach allows detection of conspic-
uous image areas. Conspicuousness of an individual pixel can be measured in
different ways, for example by plain disagreement of reconstructed colour values
with the original image, by the required change in model parameters to fit the
original (used in figure 5), or by the loss in overall matching quality for fitting
this specific pixel within the flexible face model. The second and third measures
take into account that in some regions small changes of the model parameters
lead to considerable changes in color value, while other regions show only small
variations.

.

ORIGINAL RECONSTRUCTION CONSPICUOUS PIXELS

Fig. 5. Reconstruction of a partly occluded face. In the matching process, pizels with
large disagreement in colour values were ignored. No segmentation was applied. The
approach allows detection of conspicuous image areas (right, see text).



8 Conclusions

We presented a method for approximating the three-dimensional shape of a face
from just a single image. In an analysis-by-synthesis loop, a flexible 3D-face
model is matched to a novel image. The novel image can now be described
or coded by means of the model parameters reconstructing the image. Prior
knowledge of the three-dimensional appearance of faces, derived from an example
set of faces, allows new images of a face to be predicted. The results presented in
this paper are preliminary. We plan to apply a more sophisticated evaluation of
reconstruction quality based on ratings by naive human subjects and automated
similarity measures.

Clearly, the present implementation with its intermediate step of generating
a complete 2D face model can not be the final solution. Next, we plan for each
iteration step to form linear combinations in our 3D-representation, render an
image from this model and then perform a comparison with the target image.
This requires several changes in our matching procedure to keep the computa-
tional costs tolerable.

Conditions in our current matching experiments were simplified in two ways.
Firstly, all images were rendered from our test set of 3D-face scans. Secondly,
projection parameters and illumination conditions were known. The extension
of the method to face images taken under arbitrary conditions, in particular to
any photopraph, will require several improvements. Along with a larger number
of free parameters in the matching procedure, model representations need to
be more sophisticated, especially in terms of the statistical dependence of the
parameters. Reliable results on a wider variety of faces, such as different age
groups or races, can only be obtained with an extended data set.

While the construction of 3D-models from a single image is very difficult and
often an ill-posed problem in a bottom-up approach, our example-based tech-
nique allows us to obtain satisfying results by means of a maximum likelihood
estimate. The ambiguity of the problem is reduced when several images of an
object are available, a fact that is exploited in stereo or motion-based techniques.
In our framework, we can make use of this additional information by simultane-
ously optimizing the model parameters ¢ and b for all images, while the camera
and lighting parameters p and r are adjusted for each image separately.

The method presented in this paper appears to be complementary to non
model-based techniques such as stereo. While our approach is limited to results
within a fixed model space, these techniques are often not reliable in areas with
little structure. For the future, we plan to combine the benefits of both tech-
niques.
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