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Abstract

Assessing visual similarity in-the-wild, a core ability of
the human visual system, is a challenging problem for com-
puter vision methods because of its subjective nature and
limited annotated datasets. We make a stride forward,
showing that visual similarity can be better studied by iso-
lating its components. We identify color composition simi-
larity as an important aspect and study its interaction with
category-level similarity. Color composition similarity con-
siders the distribution of colors and their layout in images.
We create predictive models accounting for the global simi-
larity that is beyond pixel-based and patch-based, or his-
togram level information. Using an active learning ap-
proach, we build a large-scale color composition similarity
dataset with subjective ratings via crowd-sourcing, the first
of its kind. We train a Siamese network using the dataset
to create a color similarity metric and descriptors which
outperform existing color descriptors. We also provide a
benchmark for global color descriptors for perceptual color
similarity. Finally, we combine color similarity and cate-
gory level features for fine-grained visual similarity. Our
proposed model surpasses the state-of-the-art performance
while using three orders of magnitude less training data.
The results suggest that our proposal to study visual simi-
larity by isolating its components, modeling and combining
them is a promising paradigm for further development.

1. Introduction
Visual similarity is a long-standing research problem

that has not been studied thoroughly. Its challenges come
from the ambiguity in the problem definition as well as the
subjective evaluation due to individual human perception.
There are many factors that contribute to the overall visual
similarity evaluation such as object categories, image com-
position, color layout, image style, etc.

The goal of our paper is to study the fundamental prob-
lem of visual similarity and propose novel ways to reduce
the ambiguity in order to create better predictive models.

We break down visual similarity into sub-problems (cate-
gory and color similarity), finding a way to collect mean-
ingful training data, and developing metrics and descriptors
for color similarity. In contrast to existing approaches, we
study visual color similarity “in-the-wild”, which goes be-
yond pixel-based or patch-based approaches. For individual
colors, we have a good standard to measure the perceptual
similarity that is established via the CIE 4E2000 metric
[20, 11]. However, multiple colors interact in complex ways
in natural images. Existing metrics like CIE4E∗ and hand-
crafted color descriptors [2, 12, 29, 5, 4, 21, 18, 15, 28] are
not able to accurately predict color composition similarity.

While recent methods learn visual features for image
search and visual similarity [6, 30, 23, 3, 31], they lack a
dataset built directly from human judgments on color simi-
larity for training and validation. These methods are trained
on datasets that are labeled with object categories [7, 9].
Another set of approaches try to separate aspects of percep-
tion, by discovering and learning visual attributes for image
search and retrieval [10, 32, 22, 8, 16, 24, 26]. The infor-
mation they rely on involves textual description, attribute
labeling and supervised learning on attribute labels. At-
tributes simplify the objectives of visual similarity by map-
ping a full range of perception into a discrete set of textual
descriptions. Our approach is to ask participants to visually
compare and rate images directly without having to use less
accurate means of assessment such as textual descriptions.

As stated in [33], fine-grained similarity comparisons
(including color) are critical for building perceptually ac-
curate models. However, it is very difficult to measure the
color similarity for images in-the-wild due to the high com-
plexity of natural images and the subjectivity of perceptual
judgments. Therefore, we introduce a new way to define
visual color similarity, as color composition, and study it
directly via human evaluations. The color composition as-
sessment emphasizes hues and shades, their distributions
and overall layout, independent of the semantic category.
We create a dataset annotated with 5-point similarity rat-
ings for color composition. This contrasts with other image
similarity datasets which often rely on binary labels such



(a) score ≈ 5 (b) score ≈ 4 (c) score ≈ 3 (d) score ≈ 2 (e) score ≈ 1

Figure 1: Examples of ratings for color composition similarity on a scale of 1 (lowest similarity) to 5 (highest similarity).

as INRIA Holidays [14] or the triplets dataset [30]. One of
the challenges for building a fine-grained similarity rating
large-scale dataset is the cold start problem that arises from
the very low probability in obtaining similar image pairs if
we were to sample them randomly. We overcome this by
using an active learning approach and iterating from binary
to fine-grained ratings. We also account for many measures
to ensure the quality of the dataset (Section 3). As a re-
sult, we contribute a large-scale (31,248 image pairs with at
least 20 ratings each), high quality (ICC of 0.69, very high
for crowd-sourcing) and novel dataset for color composi-
tion similarity. Our dataset is the first annotated dataset of
its kind up to date, to the best of our knowledge 1.

Using the dataset, we train a Siamese network to pre-
dict the distributions and mean opinion scores (Section 4).
The network serves as a metric and a feature extractor for
color composition similarity. We compare performances
and create a benchmark for existing color descriptors and
our trained color features in the field of color similarity
for images in-the-wild ( Section 3.3). Trained global fea-
tures using CNNs produce a very good performance (0.913
SROCC, Spearman correlation w.r.t the ground-truth). Even
though L1 and L2 measuring on existing hand-crafted lo-
cal descriptors with dense samplings yield lower perfor-
mances, it is promising to train these descriptors to capture
global features of color composition, leading to better per-
formances (the best case is 0.862 SROCC with HueSIFT).

Furthermore, we validate our color features and metrics
in a fine-grained similarity application (Section 6). Color
had been previously modeled implicitly together with cat-
egory. We propose a novel approach to combine category
features via pair-wise correlations and color similarity as
predicted from our models. These combined features are
extracted from pairs of images leading to improvements
in accuracy compared to learning on individual content or
color features alone. Training an SVM using our proposed
features on a small dataset yields better accuracy than the
state of the art. Compared to a common baseline, the
best existing method DeepRanking [30] trained on millions
of images achieves a relative improvement of 3.5%. Our
model, trained on less than 50K images in total, improves
by a much higher margin of 12.5%. Despite using three or-
ders of magnitude less training data, the absolute improve-
ment of our method on different validation sets is still better

1dataset download link: https://github.com/hamailan/
Color-Composition-Similarity

than the state of the art, 86.2% for ours vs their 85.7%.
In summary, our contributions are: (i) A general frame-

work for modeling sub-aspects of image similarity, that
is designed to handle highly subjective measurements via
crowd-sourcing and active learning. (ii) The first large-
scale perceptual color composition similarity dataset in-the-
wild with 5-point ratings. (iii) A global color similarity
benchmark for color descriptors.(iv) A new type of brief
but highly generalizing features for fine-grained similarity:
the concatenation of the correlation of category features
and color similarity extracted from pairs of images. Triplet
ranking using SVM on these features surpasses the state of
the art even when trained on a much smaller dataset.

2. Related Work
Hand-crafted Features for Color Similarity: From the

famous SIFT descriptor [19] that describes local features for
a set of interesting points in an image by histograms of gra-
dient orientations, different extensions of SIFT are derived
for color descriptors [2, 12, 29, 5, 4]. A common objec-
tive of these descriptors is to be robust against changes in
lighting, scale, rotation, and so on. A complete evaluation
of these SIFT variational color descriptors can be found in
[28]. Another set of color descriptors, introduced in the
MPEG-7 standard [21], relies on transformations to vari-
ous color spaces. Color descriptors are often designed to
be compact for fast indexing [18], or to maintain a level of
photometric invariance [15]. However, all these descriptors
operate locally on low-level image features and therefore
lack the ability to capture global color information.

Learned Features for Visual Similarity: For complex
natural images, it is challenging for hand-crafted descrip-
tors to perform well. Deep Convolutional Neural Networks
(DCNN) have been successfully applied to image similar-
ity. One type of methods learns similarity metrics for pairs
of images using pairwise similarity data [6, 33, 3, 34]. An-
other approach uses triplet data where a reference image
is paired with a positive and a negative example [31, 30].
In either case, pairwise image similarity is labeled by cat-
egory, attributes or binary classification. When labeling by
category, colors are ignored. Binary classes often relate to
generic visual similarity rather than specifically to colors.
With attribute learning, the visual attributes are expressed in
terms of textual descriptions [10, 32, 22, 8, 16, 24, 26] and
therefore over-simplify the objectives of visual and color
similarity. In this work, we aim to develop better metrics
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for color similarity that can also provide color features that
are beneficial for many Computer Vision applications.

Datasets for Perceptual Similarity: In order to train
or validate perceptual similarity metrics and descriptors, we
need to have datasets that are assessed by people as ground-
truth. However, there is no fine-grained rating dataset for
perceptual similarity for images in-the-wild. INRIA Hol-
idays [14] is a dataset where similar images are grouped
together and dissimilar images are assigned to different
groups. Another type is a triplet dataset [30] that provides
a coarse level of similarity. Recently published, the BAPPS
dataset [34] contains natural images and their generated dis-
tortions for learning perceptual patch similarity. In this
work, we fill in the missing gap by contributing a perceptual
color similarity in-the-wild dataset for which the similarity
is measured by participants’ ratings on color composition
using a fine-grained 5-point scale rating.

3. Process for Definition of Perceptual Color
Composition Similarity

The complexity of color composition on natural images
makes it extremely challenging to write down a set of rules
or formulae to define the perceptual color composition sim-
ilarity. If we need to give a verbal definition, the similar-
ity criteria that we are aiming at are the layout of colors,
color distribution, dominant colors, and the overall percep-
tual appearance of colors in the images. Instead of relying
on such a description, our approach is to capture this defi-
nition directly via human judgments. Given a pair of refer-
ence and test images, participants rate the degree to which
the pair is similar with respect to colors exclusively. We face
two challenges. The first is selecting images for which rat-
ings for color similarity make sense. Statistically, numbers
of pairs that are different in color compositions are much
higher than similar pairs. The second is to convey an unam-
biguous definition of color composition similarity to partic-
ipants so that they can understand and provide useful and
reliable ratings. Unlike other types of annotations, it is not
easy to describe the degrees of similarity.

Our solution to the first problem is to build the dataset
in two stages. In the first stage, we create a small bi-
nary dataset in which similarity is clearly defined: either
very similar or completely dissimilar. We start with the
least subjective data. It is possible to collect a small set of
pairs or groups of similar images by using INRIA Holidays
[14] dataset and Pixabay [1] images. From this starting bi-
nary dataset, we train a small binary classification network
(binary-net) to identify similar/dissimilar labels for pairs of
images. We then use the binary-net to sample more image
pairs and have them annotated by participants as similar or
dissimilar. The network performance is further improved
with the extended set of annotated pairs. We name the im-
proved binary network as improved-binary-net. For more

details, see Section 3.1.
In the second stage, we use the improved-binary-net to

select images for the rating dataset. We ask participants to
evaluate similarity on a finer-grained 5-point scale where 1
means a pair is completely different and 5 means the images
are very similar or almost identical. It is important to choose
evaluated images such that the ratings are present for all 5
options. We describe the detailed strategy in Section 3.2.

To solve the second problem, we ask participants to con-
sider several cues that help them consistently compare pairs
of images such as presence of dominant colors, distribution
of colors, colors of foreground objects and the background,
and the overall perceptual appearance of colors in the whole
image. We quantify the rating from 1 to 5 as follows: 1 -
the pair of images are totally different, 2 - below 50% sim-
ilar colors, 3 - about 50% similar colors, 4 - above 50%
similar colors and 5 - very similar to identical (e.g., Fig. 1).
We present many rating examples, conduct an entrance test
before participants can start working on the project and em-
bed hidden test questions seamlessly into work items. The
test pairs and their expected ratings serve as ground truth
to assess whether participants’ rating criteria are consistent
with the requirements of the task. In the test cases, to al-
low room for subjectivity, for very similar pairs we set the
candidates for correct ratings to {4, 5}. For pairs that are
absolutely different, the correct rating candidates are set to
{1, 2}. For non-extreme similarities, ratings of {2, 3, 4} are
allowed. Participants must pass the entrance test and main-
tain their accuracy above 70% throughout the study. Finally,
the quality of our rating dataset is evaluated in Section 3.3.

3.1. Binary Dataset and Network

We combine the images from INRIA Holidays [14] and
Pixabay [1] datasets to create our own dataset. We use an
active learning approach to improve the binary network and
expand the dataset (Fig. 2). The process starts with an equal
number of 3,591 labels each for similar and dissimilar im-
age pairs. This small set of labels are manually annotated by
the authors (Fig. 2(a)) and are used to train the initial binary
network named binary-net to classify similar or dissimilar
images in term of color composition (Fig. 2(b)). Due to
the limited amount of training data, we design a CNN ar-
chitecture with few parameters. Instead of using a Siamese
model, we stack pairs of RGB images into 6 channel inputs.
We augment the images by horizontal flips, small rotations,
and swap the two inputs. The output of the network is soft-
max scores for 2 classes: similar and dissimilar.

In the next step, we generate data for participants’ evalu-
ation on new pairs of images for binary classification using
the initial binary network binary-net (Fig. 2(c)). We select
1,302 reference images that cover a wide variety of objects,
textures, and scenes. We use binary-net to evaluate the bi-
nary similarity between each reference image against a set



Figure 2: Active learning approach for building color composition similarity binary dataset: it starts with hand-picked similar
image pairs (a), on which a classifier is trained (b) to select more similar image pairs (c), which in turn are annotated for
similar or dissimilar by crowd-sourcing participants. The process is repeated by using accumulated user annotated data.

of 3,000 images from our large pool dataset. The results
from the binary-net are then sorted from the most similar to
the most different based on their similarity scores. For each
reference image, only the first few dozen images are similar
and the majority of images are different. Therefore, we se-
lect only 24 evaluated images per reference for participants
to evaluate similar or dissimilar. These 24 images consist
of 1 highly similar image from the initial set of 3,591 labels
that are manually selected at the beginning, the first 20 im-
ages resulted from the binary-net and 3 dissimilar images
that are taken randomly at the end of the binary-net result
list. It yields 31,248 pairs of comparisons in total. Finally,
the participants’ evaluations are added to the binary dataset
(Fig. 2(d)) and fed to re-train the initial binary-net to in-
crease its accuracy (Fig. 2(b)). This re-trained network is
called improved-binary-net and we use it to select images
for fined ratings in Section 3.2.

3.2. Rating Dataset

In the subsequent crowd-sourcing process we create a
fine-grained rating dataset from the binary set. We ask par-
ticipants to evaluate the similarity for pairs of images using
a 5-point Likert-type scale, ranging from absolutely dissim-
ilar (1) to very similar or identical (5). The rating data com-
prises 1,302 reference images. There are 24 evaluated im-
ages for each reference. It is important to choose the eval-
uated images such that their ratings span the entire 5-point
scale. For very similar to identical (rating 5) pairs of im-
ages, we choose pairs from the 3,591 manual labeling data.
For pairs of images for which the similarity ratings poten-
tially range from 2 to 4, we select pairs from the top results
of improved-binary-net sorted by similarity scores. Dissim-
ilar pairs of images (rating 1) are accurately chosen from
the bottom of the sorted improved-binary-net result list.

The important factors that control the quality of the rat-
ing dataset are the rating accuracy and consistency among
work items of individual participants as well as the consis-
tency among all participants for each work item. To reduce
biases and promote the coherence of participants’ ratings,
for every reference image, we presented to participants a

group of evaluated images at a time. We asked the partic-
ipants to not only rate each pair of images individually but
also compare among the group of evaluated images. If an
evaluated image A is more similar to the reference image
R than an evaluated image B to R, then the rating for A
should be higher than for B and vice versa. If both images
A andB are equally similar to the reference image, then the
ratings for both should be the same. This strategy provides
an additional context for rating, thus helping participants to
adjust their individual ratings to become more consistent.

3.3. Quality of the Rating Dataset

One important aspect of crowd-sourcing experiments is
to have a sufficient number of participants working on each
question. In highly subjective perceptual comparison tasks,
we need a larger number of user judgments per item com-
pared to less subjective tasks such as object labeling. There-
fore, we conducted a preliminary experiment on a small part
of the dataset (559 pairs) using 40 ratings per pair. We stud-
ied how well a smaller number of ratings can reproduce the
mean of 40 ratings. We found that the mean opinion derived
from 20 ratings suffices to obtain a 0.994 Pearson linear cor-
relation with the mean for 40 ratings, with an MAE of 0.033
on a scale of [1,5]. Thus, we chose 20 ratings per pair.

To evaluate the quality and reliability of the dataset, we
use the Intra-class Correlation Coefficient (ICC). The one-
way ICC on our dataset is 0.69. This suggests a high agree-
ment in the context of crowd-sourcing rating experiments,
where values between 0.3 and 0.5 have been previously re-
ported on several rating datasets [25, 13].

4. Computational Model of Perceptual Color
Composition Similarity

With the rating dataset, we train Convolutional Neural
Networks (CNN) to evaluate the perceptual color compo-
sition similarity. These networks can be used as similarity
metrics and color feature extractors.

Different from binary networks, rating networks allow us
to rank image similarity. We train two types of rating net-



(a) Siamese network for predicting ratings. (b) Shared-weight Convolutional Block.

Figure 3: Siamese architecture (a) using Convolutional Neural Network (b) for training our color similarity metrics.

works: COLSIM RATE to predict the participants rating
distribution and COLSIM MOS to predict the participants
Mean Opinion Score (MOS). Both networks use the same
architecture as in Fig. 3(a). The only difference is in the pre-
diction layer, where we have a single output for MOS and
five outputs for rating distributions. The overall architec-
ture is a Siamese network that has two input images. Each
input is fed into a shared-weight Convolutional Block that
contains a series of convolutional layers to extract features.
The features from the two input images are combined by a
function f defined in Eq. 1. Finally, a neural network with
a few fully connected layers performs the predictions based
on the combined features.

Shared-weight Convolutional Block: we use 5 convo-
lutional layers that are similar to the Caffe implementation
of AlexNet with Batch Normalization on the first 2 layers.
The responses of the last convolutional layer are flattened
to form a feature vector v (Fig. 3(b)). We also train a com-
pact network that contains only 3 convolutional layers on
images of size 112×112 pixels. The compact network is
smaller and faster, but there is a slight drop in performance
(see Section 5).

Image Features Combination: to combine features of
image 1 (v1) and features of image 2 (v2), we use 3 dif-
ferent metrics: absolute difference, squared difference and
Hadamard product as follows:

f : (v1, v2)→ C(|v1 − v2|, |v1 − v2|2, v1 · v2) (1)

where ‘·’ denotes the element-wise multiplication, and C is
the concatenation operator. The combined features resulting
from Eq. 1 are used as the input to the Fully Connected
Layer (FCL) block (Fig. 3(a)).

Fully Connected Layer (FCL) Block: is comprised of
two fully connected layers of size 512 and 128. We use
dropout 0.5 for the first FCL and 0.2 for the second FCL.
ReLU activation is used throughout the whole network.

Rating Distribution prediction: participants’ ratings
are distributed over the 5-point scale. Given a pair of im-
ages, we want to predict the participants’ rating distribu-
tion. We use different metrics for computing the distribution
losses, including Mean Absolute Error (MAE), Kullback-
Leibler (KL) divergence and Huber loss. From numerical
results, KL divergence consistently performs the best. Thus,

we use KL divergence in all of our rating networks.
Mean Opinion Score (MOS) prediction: From the par-

ticipants’ rating distributions, we can compute MOS values
that are useful for image ranking. The MOS is computed as
MOS =

∑n
i=1 i · P (i) where P is the normalized rating

distribution and n = 5 for a 5-point rating scale. We also
train networks that predict MOS (COLSIM MOS) using
Mean Squared Error (MSE) loss. Our experiments show
that MOS derived from predicted rating distributions has
lower errors compared to the results of networks that are
trained directly on MOS data.

5. Color Descriptors Evaluations
In order to evaluate and compare the performances of

different descriptors and networks on perceptual color sim-
ilarity measurements, we split the dataset into an 80% train-
ing set (24,840 pairs) and a 20% test set (6,210 pairs). There
are no common reference images in the two sets. All the al-
gorithms are trained and validated on the training set and
tested on the test set. The results reported in Table 1 are
the SROCC on the test set, which measures the Spearman
Rank Order Correlation between the predicted results and
participants’ ratings. We choose SROCC over other metrics
such as MAE or MSE because it accounts for the changes
in scale and non-linearity of the measurements coming from
different descriptors and methods.

We divide color descriptor methods into three groups:
histogram-based, SIFT-based and MPEG7. We use L1 and
L2 for all descriptors in these three groups to measure the
similarity between pairs of images in the test set, rank them,
and compute the SROCC. We also train the descriptors
using CNNs, and neural networks for SIFT and MPEG7
descriptors, respectively. To extract SIFT descriptors, we
densely sample the images and compute SIFT color fea-
tures at each sampled point. The resulting data is enough
to train a CNN that has a similar architecture to our COL-
SIM RATE network (in Section 4). MPEG7 descriptors,
on the other hand, are very compact. Their sizes are 192
for Color Layout Descriptor (CLD), and 256 for Color
Structure Descriptor (CSD) and Scalable Color Descriptor
(SCD). Thus, we train a small neural network that has two
fully connected layers with one prediction layer. The fea-
tures produced by descriptors for pairs of images are com-



Descriptor Spearman correlation ρ

L1 L2 Trained
MOS/Rating

nrghistogram 0.503 0.546 -
opponent histogram 0.604 0.498 -

hue histogram 0.631 0.535 -
lab histogram -0.260 -0.336 -

rgsift 0.259 0.277 - / 0.754
hsvsift 0.327 0.277 - / 0.757
csift 0.351 0.318 - / 0.687

opponentsift 0.604 0.498 - / 0.636
huesift 0.631 0.535 - / 0.862

Descriptor / Spearman correlation ρ

Network L1 L2 Trained
MOS/Ratings

CLD 0.290 0.562 - / 0.715
CSD 0.653 0.692 - / 0.737
SCD 0.692 0.646 - / 0.720

VGG19 + L2 - - 0.467 / -
VGG19 Transfer - - 0.780 / 0.812
VGG19 Fine-tune - - 0.832 / 0.863
Compact (ours) - - 0.860 / 0.869
COLSIM (ours) - - 0.902 / 0.913

Table 1: Evaluation of color descriptors and learning methods on color composition similarity. Predictions are based on L1
and L2 norms, or trained on ‘MOS’ and distribution of ‘Ratings’. The Spearman ρ between the predictions and the MOS
computed from user ratings is reported. Performance is highest when training on distributions of ratings.

bined using the function f as described in Eq. 1.
The numerical results show that descriptors, even though

designed for color similarity, do not correlate well with hu-
man evaluations. The maximum SROCC is 0.692 obtained
with CSD and SCD descriptors. Training a CNN or Neural
Network on the descriptors can improve the results up to a
maximum of 0.860 SROCC in the case of huesift. Never-
theless, it takes an additional step to first compute descrip-
tors before training them to get decent results.

A straightforward approach is to fine-tune a network or
train one from scratch on our dataset. We do transfer learn-
ing from pre-trained features and then fine-tuning using the
VGG19 network [27]. As VGG19 is trained for object cat-
egorization, it cannot perform well out of the box on color
similarity. The SROCC result for L2 distance on fc7 fea-
tures of the VGG19 is 0.467. It shows that content and color
are not highly correlated. The SROCC result of VGG19
transfer learning is 0.812 and improves to 0.863 with fine-
tuning. Even though the results are satisfying, we observe
that the features in VGG19 favor classification and hence
still affect the performance of color similarity measurement.
Thus, we train a rating network COLSIM RATE described
in Section 4 from scratch. The SROCC of COLSIM RATE
is 0.913, the best of all methods. We also train a Com-
pact network that contains 3 convolutional layers, 2 fully
connected layers and 1 prediction layer on images of size
112×112 pixels. Even though the performance is lower at
0.869 SROCC, the network has fewer parameters while hav-
ing comparable performance to the fine-tuned VGG19. The
MOS prediction network COLSIM MOS has an SROCC
of 0.902, which is slightly lower than COLSIM RATE.

Regarding errors, we plot the cumulative distribution
function (CDF) of the MAE between the participants’ distri-
bution of ratings and our COLSIM RATE network’s pre-
dictions in Fig. 4(a). The MAE is below 0.1 for 70% of the
test data and only increases substantially in the last 5%.

6. Fine-grained Image Similarity
Fine-grained image similarity measures not only the con-

tent difference among image classes but also the visual dif-
ference within a class. Image retrieval by class or categori-
cal features does not consider colors as a part of the ranking
procedure. For instance, when searching for an image of a
black poodle, retrieval prioritizes semantic information and
returns poodles with various colors. This is not always de-
sirable. We show that by using our visual color similarity
metric, the relevance of the ranking results is improved.

6.1. Related work

Existing methods relate visual similarity to fine-grained
classification or visual attribute similarity. These two main
approaches are only beginning to tackle the complex nature
of perceptual comparisons as part of visual search. Visual
similarity is contextual because of the subjective judgments
and its use-case. For instance, a query for an image depict-
ing a leopard pup at the zoo could be intended to retrieve
images of leopards (pure class), young leopards (object at-
tribute and class), or yellow animals (color and class).

The first type of methods learn features for general vi-
sual similarity [6, 30, 23, 3, 31], starting from category la-
bels, textual descriptions, or triplet data. The second type of
approaches separate aspects of visual similarity, by learn-
ing from human-nameable visual attributes or discovering
new ones for image retrieval [10, 32, 22, 8, 16, 24, 26, 31].
Attribute learning complements category-level recognition
by learning the degree to which one or more attributes are
present in an image. Attributes are very specific and com-
bining them is challenging [26] due to their interactions.

We propose to separate visual similarity into multiple
factors that can be individually studied. In this work, we fo-
cus on the color composition factor. This is not a per-image
attribute as we cannot quantify the amount of color compo-
sition in an image, nor can we say that an image has more



(a) CDF of similarity ratings MAE. (b) Examples of different error levels (MAE). Blue graph: ground-truth, red graph: prediction

Figure 4: The MAE between participants’ rating distributions and the COLSIM RATE network’s predictions on the test set.
For most images the MAE is small, e.g., (i) and (ii) whereas only 3% have an MAE > 0.2, e.g., (iv).

or less color composition than another. However, it allows
us to better specify the context in visual search. We use the
correlation between pairs of content features and color sim-
ilarity to improve fine-grained visual similarity prediction.

6.2. Features and training model

Our hypothesis for improving fine-grained similarity is
that the combination of category and color features helps
to better predict the similarity of image pairs compared to
the individual features alone. The similarity in the categor-
ical feature space is computed as the correlation between
two feature vectors of pairs of images. The color similar-
ity features are extracted from our color composition simi-
larity metric or L2 distance for existing hand-crafted color
descriptors. The detailed formulations for the content cor-
relation and color similarity are explained below. Our hy-
pothesis is verified by numerical results in Table 2.

Wang et al. [30] have introduced a fine-grained similar-
ity database which contains 5,033 ranked triplets. A triplet
comprises a queryQ, and two compared imagesA andB. If
the visual similarity sim(Q,A) > sim(Q,B) which means
A is more similar to Q than B, then the correct ordering of
the triplet is (Q,A,B).

Using this dataset, we study different similarity measures
on category and color features individually and in combina-
tion. We use the L2 distance to measure the visual sim-
ilarity between pairs of images. For content features, we
evaluate L2 on the fc8 layer of AlexNet and the Global Av-
erage Pooling (GAP) layer of ResNet50. For color features,
we evaluate L2 for all color SIFT descriptors, MPEG7 de-
scriptors and COLSIM features extracted from our model.
The L2 distance on individual types of features does not
yield good results (Table 2). Therefore, we train a binary
classifier (SVM, RBF kernel) on the triplet data using com-
binations of features. In general, the input features to the
SVM are a pair of similarities (sim(Q,A), sim(Q,B)) for
a correct triplet (Q,A,B). Wrongly ranked triplets are cre-

ated from the correct ones, by reversing the relationships
(sim(Q,B), sim(Q,A)).

The features that are used when training the SVM
are: the direct color similarity produced by the COL-
SIM network SCOLSIM (X,Y ), and the Pearson Linear
Correlation Coefficient (PLCC) between GAP content fea-
tures 2 FGAP extracted from a pre-trained ResNet50 net-
work: SGAP (X,Y ) = PLCC(FGAP (X), FGAP (Y ))
where PLCC(x, y) = 1

n−1

∑n
i=1(

xi−x
σx

)(yi−yσy
) where n

is the number of dimensions of the features x, y. There-
fore, the input features for “SVM ResNet GAP cor-
relation” is [SGAP (Q,A), SGAP (Q,B)] which contains
only content features for a triplet (Q,A,B). The in-
put features for “SVM ResNet + COLSIM” are the
combination of content similarity and color similar-
ity, and defined as [SCOLSIM (Q,A), SCOLSIM (Q,B),
SGAP (Q,A), SGAP (Q,B)] for a triplet (Q,A,B).

6.3. Results analysis and discussion

The DCNN methods in [30] have been evaluated on
a validation dataset of 14,000 triplets. However, the au-
thors [30] make available only a subset of 5,033 triplets.
We evaluate our models on this subset by using 20 repeti-
tions of random 80%/20% train/validation splits. The opti-
mal hyper-parameters for each split are estimated by 5-fold
cross-validation. Our proposed model using the combined
category and color feature similarities performs best. We
do not have access to the other methods to directly compare
their performances on the “Subset 5k” database. Thus, we
use a shared baseline model for comparison: the L2 distance
between fc8 features from AlexNet [17], named “ConvNet
AlexNet fc8”. This common baseline performs much bet-
ter on the 14K dataset than on the subset 5K (Table. 2).
Therefore, we expect equivalent methods will perform bet-
ter when tested on the 14K compared to the 5K subset.

2the terms category and content features are used interchangeably



Model
Validation 14k
(not available)

Subset 5k (⊂ 14k)

L2 on ConvNet AlexNet fc8 82.8% (baseline) 73.7% (baseline)
Single-scale Ranking 84.6% -

OASIS on Single-scale Ranking 82.5% -
Single-Scale & Visual Feature 84.1% -

DeepRanking 85.7% (+3.5%) -
L2 on *sift descriptors - 62.9% - 65.4%

L2 on MPEG descriptors - 62.3% - 65.1%
L2 on COLSIM features - 69.1%

L2 on ResNet GAP - 79.1%
SVM on COLSIM correlation - 73.7%

SVM on ResNet GAP correlation - 84.3%
SVM on ResNet + COLSIM - 86.2% (+12.5%)

Color
Descriptor

Combined
features

Color
features

csift 84.5% 50.7%
rgsift 84.6% 61.3%

oppsift 84.8% 64.5%
hsvsift 85.1% 62.7%
huesift 85.3% 65.4%
CSD 85.5% 68.9%
SCD 85.5% 62.8%

COLSIM (ours) 86.2% 73.7%

SVM results on the 5k subset when training
with (combined) and without content features.
Except COLSIM, we use L2 for the rest of
color descriptors to compute SVM features.

Table 2: Evaluation on the DeepRanking triplet dataset. Results for the ’Validation 14k’ column are reproduced from [30].

State-of-the-art performance: the accuracy of our
method is 86.2% compared to 85.7% for the best Deep-
Ranking [30] approach. However, our method shows a
substantially higher improvement of 12.5% relative to the
shared baseline, compared to the improvement of 3.5% for
DeepRanking. As the performance of the baseline method
on ‘Subset 5K’ (73.7%) is much lower than on ‘Validation
14K’ (82.8%), the relative % improvement suggests a much
better overall performance for our method.

Feature combination vs individual features: even
though the SVM training on ResNet GAP correlation and
COLORSIM scores achieves the best results, we also test
the model on different hand-crafted descriptors. The re-
sults, on the right of Table 2, show that: (i) COLSIM out-
performs hand-crafted descriptors; (ii) the combination of
content feature correlation and color similarity yields better
accuracy compared to using L2 on descriptors or ResNet
GAP alone (on the left of Table 2).

Feature correlation vs L2 distance: using content or
color descriptors alone, we find that training an SVM on
the PLCC of the features results in a better accuracy than
L2 distance on the respective features. For instance, the ac-
curacy for SVM on ResNet GAP correlation is 84.3% com-
pared to 79.1% for L2 on ResNet GAP features.

Features vs end-to-end training: while DeepRanking
[30] used 14 million google search images during training,
and a large set of triplets (≈ 50k), our method relies on
a much smaller set of 5,033 triplets and our own database
of 30k image pairs. The improved performance of our ap-
proach, using combined category and color features, shows
that embedding domain knowledge in our model achieves
both excellent performance and efficient training. Training
on the proposed low-dimensional pairwise features is much
faster than an alternative end-to-end triplet network.

7. Conclusion

We hypothesize that visual similarity can be better stud-
ied by isolating its multitude of aspects and modeling them
individually. This approach requires the means to isolate,
model, and combine multiple aspects. We isolate the as-
pect of color composition similarity, define an efficient data
collection and annotation strategy including an active learn-
ing approach for this subjective measurement task. This
process leads to the first large-scale dataset for measuring
color composition similarity for images in-the-wild. Our
dataset has enabled us to train accurate DCNN models
for perceptual color similarity and benchmark the perfor-
mance of existing color descriptors. The numerical results
show that few existing descriptors are informative for global
color similarity, except for deep features that are trained
on our dataset. We create an improved model for visual
ranking similarity, by introducing a novel way to combine
non-homogeneous representations such as color similarity
and category features. These multi-aspect, low-dimensional
features have proven to be extremely effective in training
visual ranking models, surpassing the existing state of the
art ‘DeepRank that was trained on substantially more data.
Overall, the results prove that our proposed approach better
predicts visual similarity. We expect that future works will
improve visual similarity models by isolating and studying
other aspects such as texture, style, etc.
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