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ABSTRACT
Feature learning is an essential process in image and object
classification, even more so for fine-grained classification
where objects have a similar global structure and subtle dif-
ferences in local parts. Inspired by Linear Discriminant
Analysis (LDA), we propose a two-phase optimization to
transform deep features from their original space to a lower
dimension space using neural networks with two primary
goals: minimizing variances within each class and maxi-
mizing pairwise distances between features from different
classes. The approach produces more discriminative features
that lead to improvements in classification performance. We
evaluate our method on four well-known fine-grained classifi-
cation datasets. Our optimization leads to significantly better
classification accuracy (up to 6.4% increase from the base-
line). The standard deviations of the accuracy over multiple
training runs show that our approach yields more consistent
and reliable results than transfer learning.

Index Terms— LDA, NDA, discriminant analysis, fea-
ture transformation, fine-grained classification

1. INTRODUCTION

The task of Fine-Grained Visual Classification (FGVC) is to
classify sub-classes under one common super-class. Exam-
ples are recognizing different sub-species of birds [1, 2], dif-
ferent models and manufactures of cars [3], sub-types of flow-
ers [4], etc. On the one hand, it is challenging because the
sub-classes share the same visual structures and appearance;
the differences are very subtle. In many cases, it requires do-
main experts to distinguish and label these sub-classes by rec-
ognizing their discriminative features on specific parts of the
objects. Therefore, it is also a great challenge to obtain large-
scale datasets for FGVC. On the other hand, the intra-class
variance can be visually higher than the inter-class variance.
Such cases can be seen in different colors and poses of objects
in the same sub-class 1 (Figure 1).

FGVC methods, especially those that use Deep Convo-
lutional Neural Networks (DCNNs), aim to learn discrimi-
native features that can address the subtle differences among

1Subsequently, we will use ”classes” instead of ”sub-classes” for short.
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Fig. 1: An example of high intra-class variance in (a) and
low inter-class variance in (b). In (a): the miniature poodles
(same class) have different colors and poses. In (b): images
are from three different classes (Siberian Husky, Malamute,
and Eskimo) that are difficult to distinguish.

classes and the high variance within each class, which are the
specific challenging aspects of FGVC. One recent approach
that produces state-of-the-art results is to extract subsets of
the ImageNet dataset [5] that are visually similar and relevant
to fine-grained classification classes and combine them with
other datasets to do transfer learning and fine-tuning [6, 7].
These methods are data-driven and take advantage of DCNNs.
While the large-scale data empowers this domain adaptation
and transfer learning approach, the task of learning discrimi-
native features for FGVC is left to the DCNNs.

Inspired by LDA [8], we take on the method’s objectives
and combine it with the power of neural networks to improve
discriminative features. Our goal is to optimize the learned
features produced by transfer learning or domain adaptation
such that they become more discriminative and therefore lead
to better classification results. This optimization focuses on
solving these three criteria: (i) Reducing intra-class variance
by minimizing the total distance between features in the same
class to their means. (ii) Increasing inter-class variance by
transforming the feature space such that features between two
classes in the target space are moved further apart. (iii) Im-
proving classification accuracy.

We implement all those three criteria using a small neural
network with a two-phase optimization approach called Neu-
ral Discriminant Analysis (NDA). The first phase of the NDA
optimization is to pull feature points within each class to the
class center (class mean). In the second phase, we construct a
Siamese network that uses the NDA network as a shared base.
The Siamese optimization will pull pairs of features of the
same class together and push pairs of features that belong to
different classes apart. Finally, we train a classification layer



on the features produced by the NDA network. We evaluate
our NDA network on four different FGVC datasets. Our re-
sults are better than the state-of-the-art on three datasets by a
large margin and in a close match with the last dataset. The
improvements are up to 5.4% over the state-of-the-art results
and up to 6.4% compared to the baseline. We also compute
standard deviations on the accuracy results of classification
with and without NDA optimization. The statistics show that
NDA optimization yields a more stable accuracy across dif-
ferent rounds of training with random initializations.

Our contribution to the FGVC field is an effective and use-
ful two-phase Neural Discriminant Analysis (NDA) optimiza-
tion that is implemented using a neural network with a few
fully connected layers. The NDA optimization helps to trans-
form the original features into a set of new features that are
more discriminative. Our proposed optimization leads to im-
proving fine-grained classification performances. As a small
independent component, NDA can be easily added to the last
feature layer of an existing classification DCNN to form an
end-to-end network.

2. RELATED WORK

In FGVC, experts distinguish sub-classes (or classes) based
on specific parts of the objects. Therefore, a straight-forward
approach is to learn features of object parts [9, 10, 11]. This
approach often requires heavy part annotations from domain
experts, and therefore it is not very easy to extend to large-
scale datasets. Another set of works focus on visual attention
on discriminative regions [12, 13, 14, 15]. Different pooling
techniques have also been developed such as bilinear pool-
ing to study the interactions of sets of local features [16, 17,
18]. Besides the high intra-class and low inter-class vari-
ance challenge, FGVC also faces a problem from small scale
datasets. In order to address this issue, researchers work on
different strategies to collect more relevant images to enrich
the datasets [7, 19] or employ human in the loop to bootstrap
datasets [20, 21]. Cui et al.[6] and Zhang et al.[7] use subsets
of ImageNet [5] that are visually similar to FGVC classes,
in combination with iNat [22] or L-Bird [23] dataset to do
transfer learning and fine-tuning. These methods hold state-
of-the-art results in several benchmark datasets.

From high-level features produced by pre-trained DCNNs
for classification,we take a step further by transforming deep
features in order to move instances among classes apart and
bring instances from the same class closer together. This
objective is similar to Linear Discriminant Analysis (LDA).
However, we implement it using a neural network architec-
ture, thus the term Neural Discriminant Analysis (NDA).

3. NEURAL DISCRIMINANT ANALYSIS (NDA)

Similar to LDA, NDA operates on feature spaces. Features for
image classifications can be obtained from various types of

network models. We opt to use pre-existing transfer learning
networks from [6] to extract classification features and use
them as pre-optimized data for our method.

3.1. Feature discriminant analysis

Let f be the pre-optimized features that are extracted from a
pre-trained classification network and F be the transformed
features of f .

F = N (f), (1)

where N is a general function for feature transformation and
optional dimensionality reduction. The optimization objec-
tives for N are the following:

• Maximizing the fine-grained classification results:
Let N 1 is the classification function to classify feature
F . Let the classification results be q(x) = N 1(F).
Maximizing classification results is equivalent to mini-
mizing the categorical cross entropy loss:

H(p, q) = −
∑
∀x

p(x)log(q(x)), (2)

where p(x) is the classification ground-truth.

• Minimizing intra-class variance: This is to minimize
the total distances for all the feature points F i

j of class
i to its mean value, calculated as below for n classes:

LMean =

n∑
i=1

∑
j

(
F i

j − F̄ i
)

(3)

where F̄ i are the mean features of class i.

• Maximizing inter-class variance: For this optimiza-
tion, we propose to use pairs of images. If a pair of
images belong to the same class, we want to reduce the
distance between the corresponding image features;
otherwise, we want to increase the distance between
them. The effect is to push features from different
classes apart while keeping features within the same
class close to each other. Let y = 0 if two features Fk

and Fl are from the same class and y = 1 if they are
from different classes. The optimization for inter-class
variance minimizes the following function:

LSiamese = (1− y)(1− e−d) + y ∗ e−d (4)
d = l2(Fk,Fl) (5)

d: Euclidean distance between two features Fk and Fl.

When y = 0, Eq. 4, which is the Siamese loss, is also op-
timized for intra-class distance, but this is a weak constraint
compared to Eq. 3. In the Siamese loss, the optimization is
done pairwise and batch-based. As a result, feature points
move relative to each other. On the other hand, the Eq. 3 is
optimized such that all the feature points move to the pre-
calculated class mean. The superior performance of NDA
over Siamese optimization is presented in Table 2.



3.2. Discriminant analysis with neural networks

(a) Feature extraction

(b) NDA model

(c) NDA two-phase optimization

Fig. 2: An overview of the NDA model and its optimization.

The feature transformation function N in Eq. 1 is imple-
mented as a neural network (NDA) that step-by-step reduces
the dimension of the pre-optimized features. To satisfy the
objective in Eq. 2, which is maximizing the classification re-
sults, we first append a single-layer neural network N 1 at the
end of the NDA network to train for classification using cate-
gorical cross-entropy loss. The result is a classification neural
network N 2 = N 1(N ) (Fig. 2(b)). This first step of training
is to make sure the dimension reduction of the NDA network
N can maintain the classification accuracy from the original
features.

The optimizations for inter-class and intra-class variance
should be done jointly. We develop a two-phase optimiza-
tion for each epoch of training. In the first phase, we opti-
mize for the Eq. 3. All the features f i

j are fed forward to
the NDA network, forming features F i

j . The mean features
F̄ i are computed for every class i. We then use the Mean
Squared Error loss to minimize the distances between all fea-
tures F i

j of the same class i to their mean feature F̄ i. In the
second phase, we optimize for the inter-class variance. We
use the NDA network as a base to form a Siamese network S.
The Siamese network S has two input features fk and fl and
outputs the Euclidean distance between Fk and Fl. If fk and
fl are in the same class, the output distance is reduced, other-
wise, increased. The loss function for the Siamese network S
is implemented as in Eq. 4. Finally, we retrain the 1-layer pre-
diction network N 1 on the transformed features F produced
by the NDA network N for fine-grained classification. The
accuracy is improved thanks to the NDA optimized features.

Our NDA optimization alternates between Eq. 3 (mini-
mize the mean variance) and Eq. 4 (optimize the Siamese
loss) in each epoch. The two losses are not combined into
one single optimization. Thus, no loss weights are required.

4. EXPERIMENTS

We evaluate our proposed method on the following FGVC
datasets: CUB-200-2011 [1] that has 200 types of birds,
Flower-102 [4] with 102 types of flowers, Stanford-Cars [3]
that has 196 types of cars and NABirds [2] with 555 classes
of birds. We use Inception-ResNet-V2, Inception-ResNet-
V2-SE and Inception-V3-iNat models from Cui et al.[6] as
base networks to compare across all datasets.

Implementation: Input images of dimensions 448×448
pixels are used for all the experiments. The NDA network
N is a two-layer neural network with an input feature size of
2, 048 or 1, 536, depending on the networks that are used to
extract the features. The first hidden layer has 1, 024 nodes
followed by a ReLU activation, and the last layer has 512
nodes, also with ReLU activation. We add 0.35 and 0.25
dropout for each layer, respectively. The classification net-
work N 1 contains only a single prediction layer with a soft-
max activation. By concatenating N 1 after N , we have a
neural network N 2 = N 1(N ). In the initial training, we
train N 2 to reach the reported accuracy in [6]. The number
of training epochs can range from 100 to 1, 000, depending
on the datasets and the types of pre-optimized features. NDA
is optimized using 20 to 30 epochs for all the experiments.
SGD optimizer with learning rate 10−5 is used for minimizing
variance to class means, and RMSprop optimizer with learn-
ing rate 10−4 is used for the Siamese optimization. For each
epoch, we re-compute the mean for each class and re-generate
input data pairs for the Siamese optimization.

Data sampling: After each epoch, we re-sample pairs of
data for the Siamese loss optimization in Eq. 4. For each im-
age in a class, we randomly select one image from the same
class and k images from different classes. The intra / inter
ratio is therefore 1 : k, where k ≥ 1. We chose k = 2,
which leads to good results and surpasses the state-of-the-art.
Increasing k will significantly increase the training time. In
training, the data is shuffled randomly.

Finally, we re-train the single layer prediction network
N 1. It usually takes half the number of epochs of the transfer
learning for the training to converge. We compare our results
with the state-of-the-art in Table 1. We use features extracted
from Inception-ResNet-V2, Inception-ResNet-V2-SE and
Inception-V3-iNat models from [6]. The best performances
of transfer learning networks in [6] are from Inception-V3
and Inception-ResNet-V2-SE. Even though the features from
Inception-ResNet-V2 transfer learning do not produce the
best results on their own, we are still able to top the state-of-
the-art in a majority of the evaluated datasets.

Accuracy: Our method obtains the state-of-the-art in 3



Method CUB-200 Stanford-Cars Flower-102 NABirds
DLA [24] 85.1 94.1 - -

Object-part-Attention [12] 85.8 92.2 97.1 -
Pairwise-Confusion [25] 86.9 92.9 91.4 82.8

Multi-Attention [14] 86.5 93.0 - -
HBP [17] 87.1 93.7 - -
DCL [11] 87.8 94.5 - -

TASN [15] 87.9 93.8 - -
Ge et al.[26] 90.4 - - -

Best of Transfer Learning [6] (baseline) 89.6 93.5 97.7 87.9
NDA (Inception-V3-iNat) (ours) 87.4 99.9 95.5 83.9

NDA (Inc-Res-V2) (ours) 90.1 97.4 97.7 88.4
NDA (Inc-Res-V2-SE) (ours) 89.7 99.9 97.7 89.5

Table 1: Comparison of results with the state-of-the-art. The features used in our methods are from transfer learning networks in
[6]. The best results are reported for Transfer Learning [6] which are from their Inception-V3 or Inception-ResNet-v2-SE trans-
fer learning networks and used as baselines. All of our results are averaged over 10 training runs with random initializations.
”Inc-Res” is short for Inception-ResNet.

Method CUB-200 Cars Flower NABirds
Siamese 89.7 96.5 97.5 88.2

NDA (ours) 90.1 97.4 97.7 88.4

Table 2: Comparison of results for NDA optimization and
Siamese network (without Mean Loss) using Inc-Res-V2
model. All of our results are averaged over 10 training runs.
The comparison in Table 1 shows that all the methods in
this field compete at 0.1%, so the improvement of NDA over
Siamese is substantial.

Model Method CUB-200 Cars Flower
Inception- TL 0.74 2.53 0.22
ResNet-V2 NDA 0.28 1.80 0.10
Inception- TL 0.69 3.88 0.13

ResNet-V2-SE NDA 0.17 0.00 0.13
Inception- TL 3.96 8.32 0.50
V3-iNat NDA 0.27 0.00 0.23

Table 3: Training stability: standard deviations of accuracy
over 10 training runs for different types of networks. TL is
short for transfer learning. The standard deviations for clas-
sification using NDA optimization are consistently smaller
than those of classification without NDA optimization. It
shows that the NDA optimization produces more stable re-
sults across different training runs.

datasets: Flower-102 [4], Stanford-Cars [3] and NABirds [2],
and close to the best performance on CUB-200-2011 [1]. Our
method surpasses the state-of-the-art on Stanford-Cars dataset
by 5.4%, on NABirds dataset by 1.6%. Compared to the base-
lines, NDA is superior by 0.5%, 6.4% and 1.6% on CUB-200,
Stanford-Cars and NABirds datasets, respectively. It is worth
to take note that FGVC is a competitive field, all the methods
compete with each other at 0.1% improvement. Therefore,
the improvement from NDA is significant.

Reliability: We compute and report standard deviations
of the accuracy across 10 runs per dataset per network in Ta-
ble 3. The standard deviations are consistently lower in all
NDA optimization results compared to transfer learning. It
shows that the NDA optimization transforms the features such
that the classification becomes more stable and reliable.

Two-phase NDA optimization: Our NDA optimization
proves its effectiveness throughout various datasets (Table 1).
If we use only one phase of the NDA optimization, such as
Siamese Loss alone, the performance drops (Table 2). With-
out the Mean Loss, it lacks a strong and explicit constraint for
intra-class optimization. Without Siamese Loss, there is no
inter-class optimization. After completing the feature-based
optimization, we can add the NDA neural network after the
last feature layer of the base network that was used for fea-
ture extraction to make it a complete end-to-end model for
prediction or testing. The end-to-end model is the advantage
of NDA over the classical LDA. With LDA, we cannot inte-
grate the feature transformation directly to DCNNs; it needs
an additional classification using SVM or a neural network.

5. CONCLUSION

Inspired by the objectives of Linear Discriminant Analysis
(LDA) and making use of the power of deep learning and
neural networks, we propose a Neural Discriminant Analy-
sis (NDA) optimization that is useful for Fine-Grained Visual
Classification (FGVC). It is a two-phase optimization that
minimizes the intra-class variance and maximizes the inter-
class variance in the deep feature domain. We obtain the state-
of-the-art accuracy on several popular FGVC datasets with a
large margin. The analysis also shows that our optimization
produces more stable and reliable results. Furthermore, the
NDA model can be used on its own in the deep feature do-
main or as a plug-in component to existing DCNNs.
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