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Abstract

Along with predictive performance and runtime speed, robustness is a key require-
ment for real-world semantic segmentation. Robustness encompasses accuracy, pre-
dictive uncertainty, stability under data perturbation and distribution shift, and reduced
bias. To improve robustness, we introduce Superpixel-mix, a new superpixel-based data
augmentation method with teacher-student consistency training. Unlike other mixing-
based augmentation techniques, mixing superpixels between images is aware of object
boundaries, while yielding consistent gains in segmentation accuracy. Our proposed
technique achieves state-of-the-art results in semi-supervised semantic segmentation on
the Cityscapes dataset. Moreover, Superpixel-mix improves the robustness of semantic
segmentation by reducing network uncertainty and bias, as confirmed by competitive
results under strong distributions shift (adverse weather, image corruptions) and when
facing out-of-distribution data.

1 Introduction

Semantic segmentation is an important task in computer vision with a high potential for
practical applications, in particular for autonomous vehicles. Thanks to the predicted 2D
segmentation maps by the deep convolutional neural networks (DCNNs), it contributes to an
improved understanding of the scenes.
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A large body of the recent literature on DCNNs for semantic segmentation focuses on
improving predictive performance and run-time through advanced [6, 82] or lighter [44, 45,
81, 86] architectures, better use of multiple resolutions [72, 85] and novel loss functions [3, 47,
71, 87]. However, for real-world deployments, other requirements, e.g., reliability, robustness,
must be equally satisfied to avoid any failures. To reach them, there are a few major challenges
yet to be fully solved. First, DCNNs have been shown to be overconfident [25] even when
their predictions are wrong [29, 56]. In addition, DCNNs struggle to learn when there are few
training samples are available, or data and annotations are noisy. In particular, high capacity
DCNNs can find “shortcuts” that allow them to exploit spurious correlations in the data (e.g.,
background information [63, 69], textures and salient patterns [21]) towards minimizing the
training error at the cost of generalization. Such DCNNs have been shown to be biased, e.g.
contextual bias [80] or texture bias [21]. This type of problem could be addressed by larger
and higher quality datasets [42], yet the entire complexity of the world cannot be encompassed
in a training dataset with a limited size. Alternative solutions leverage uncertainty estimation
for detecting such failures [16, 19, 41]. However the most effective ones are computationally
inefficient as they rely on ensembles or multiple forward passes [2, 26, 58].

In this paper, we aim to increase the robustness of semantic segmentation models. For
the scope of this work, we define robust as follows: a model is robust if its predictions are
accurate and well calibrated when facing typical conditions from the training distribution,
but also under distribution shift (epistemic and aleatoric uncertainty) and for unknown object
classes which are not seen during training (epistemic uncertainty). Our definition extends the
scope of robustness beyond invariance to different perturbations of the input, e.g., adversarial
attacks [13, 73], image corruptions [30, 61], change of style [21], where only prediction
accuracy is used as a proxy for robustness. Here, a robust model must not be only accurate,
but also well calibrated such that unknown objects or strong input perturbations are designated
low confidence scores and easily identified as unreliable and discarded. Although difficult
to attain, we argue that both accuracy and calibration are essential for deployment in real
world conditions where the data distribution is not identical to the training distribution.1 To
improve the robustness of a DCNN, given the noisy nature of the data, and to address the
problem of limited numbers of training labeled images, we propose a technique that combines
the teacher-student framework [74] with a novel data augmentation strategy (Fig. 1). Our
augmentation method, named Superpixel-mix, exchanges superpixels between training images
to generate more training samples that preserve object boundaries and disentangle objects’
parts from their frequent contexts. To the best of our knowledge, this is among the first
investigations on the use of these techniques for reducing DCNN bias and uncertainty.
Contributions: In summary, our contributions are as follows: (i) Superpixel-mix, a new
type of data augmentation for creating new unlabeled images to increase DCNNs’ accuracy
and robustness. (ii) A theoretical grounding on why mixing augmentation combined with
the teacher-student framework can improve robustness. The theory is confirmed by a set of
experiments. (iii) A new dataset for quantifying contextual bias of DCNNs.2

2 Related Work
Robust Deep Learning. Robustness of DCNNs has been studied under different perspectives
in the past few years, e.g., robustness to adversarial attacks [13, 59]. We focus here rather on

1The two metrics are often at odds with each other: a classifier can be accurate but non-calibrated (usually
overcofident [25, 29, 56]) and conversely it can be inaccurate yet calibrated, if its predictions are always low-confident.

2The dataset will be made publicly available after the anonymity period
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the robustness of the perception functions, and less on security aspects. Geirhos et al. [21]
observe that classification models trained on ImageNet are biased towards textures and blind
to shapes. They mitigate this by augmenting the training set with stylized images [20], yet
this can be detrimental for semantic segmentation as object boundaries are distorted. Shetty
et al. [67] counter contextual bias with a data augmentation strategy that removes random
objects from images. Some other works focus on evaluating the robustness under different
image perturbations, e.g., blur [77], brightness [60]. A more systematic study of robustness
of classification DCNNs to image perturbations over varying levels of corruption is proposed
in [30]. This idea is extended to autonomous driving datasets [53], where robustness of
object detection methods is evaluated. New datasets with challenging weather conditions,
e.g., rain [34], fog [64], low light [65] are created to assess and improve robustness of visual
perception models. Most approaches simply evaluate evolution of accuracy under such
distribution shifts, but ignore other metrics, e.g., calibration that is essential for robustness
(calibrated predictions facilitate thresholding for low-confidence predictions and detection of
distribution shift). We evaluate our proposed method on multiple shifted datasets [30, 34, 53,
64] and show robustness improvements, beyond accuracy.
DCNN Uncertainty Estimation. Uncertainty estimation, i.e., knowing when a model does
not “know” the answer, is a crucial functionality for robust DCNNs. Most DCNN approaches
for uncertainty estimation are inspired from Bayesian Neural Networks [50, 55]. Deep
Ensembles (DE) [41] train multiple instances of a DCNN with different random initializations,
while MC-Dropout [19] mimics an ensemble through multiple forward passes with active
Dropout [70] layers. In-between them, some methods generate ensembles with lower training
cost (by analyzing weight trajectories during optimization [16, 51]) or with lower forward
cost (by generating ensembles from lower dimensional weights [17, 79] or multiple network
heads [43]). Other works prioritize computational efficiency to compute uncertainties from
a single forward pass [5, 37, 52, 62, 66, 75], but become specialized to a single type of
uncertainty [33, 38, 52], e.g., Out-Of-Distribution (OOD). DE methods are top-performers
across benchmarks [26, 58]. Yet, their computational costs make them unfeasible for complex
vision tasks, e.g., semantic segmentation. With Superpixel-mix we aim to attain most
properties of ensembles, e.g., predictive uncertainty and calibration, in a cost-effective manner.
Augmentation by mixing samples. Initially seen as a mere heuristic to address over-
fitting, data augmentation is now an essential part of recent supervised [11, 83, 84], semi-
supervised [4, 18, 68] and self-supervised learning methods [8, 23]. Mixing techniques,
among the most powerful augmentation strategies, generate new “virtual” samples (and
labels) from pairs of training samples. Mixup[84] interpolates two images, while Manifold
Mixup [78] interpolates hidden activations. CutMix [18, 83] replace a random square inside
an image with a patch from another image. Classmix [57] cuts and mixes object classes.
Puzzle-Mix [39] and Co-Mixup [40] mix salient areas. For semantic segmentation, mixing
by square blocks is agnostic to object boundaries and is likely to increase contextual bias
as objects or object parts can be recognized via their context, i.e., learning shortcuts [22].
Superpixel-mix mitigates this by mixing within object boundaries.

3 Proposed method
3.1 Overview

In this paper, we propose a novel superpixel-mix method to generate new training data
and leverage the results of this data augmentation technique in an existing teacher-student
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Figure 1: Consistency training with a student-teacher framework using unlabeled images (Task 2). To
mix two unlabeled images, superpixels are randomly sampled to create a mixing mask. This mask is
used to merge the two images and their pseudo-label outputs from the teacher network. A cross-entropy
loss is applied to the student network to encourage consistency between the mixed pseudo-labels and
the student network labels.

framework [74]. The combination of our mixing technique and the teacher-student framework
forms an optimization component that serves as a consistency constraint in our DCNN
training system for semantic segmentation. We conduct experiments for evaluating our trained
DCNNs on both types of uncertainties: epistemic and aleatoric. At the end, we also assess
our proposed approach in semi-supervised learning.

In general, our training process for all of our experiments comprises two steps that are
optimized simultaneously: (1) supervised learning where we train the DCNNs using images
with ground-truth labels, and (2) using teacher-student optimization with superpixel-mix data
augmentation on images as a consistency constraint that does not use ground-truth labels.
In the uncertainty experiments such as OOD in § 4.2, DCNNs’ bias studying in § 4.3, and
aleatoric uncertainty in § 4.4, we use datasets that contain ground-truth labels for all images.
We first train the DCNNs in fully supervised learning fashion as in step 1. We then remove all
those labels and use only the images to optimize for the consistency constraint as in step 2. In
the semi-supervised learning experiment in § 4.5, we use the training dataset that consists of
two parts: labelled images and unlabelled images. We train the DCNN using the labelled data
for step 1 and the unlabelled data for step 2.

Step 1 - supervised learning with labelled images: We use a standard pixel-wise cross-
entropy loss denoted by Lsup and apply it to all the labelled images. In addition, we use a
weak data augmentation (WDA) that consists of horizontal flipping and/or random cropping.

Step 2 - consistency constraint with unlabelled images: We apply two transformations
on an unlabelled image: one is WDA and the other is a strong data augmentation (SDA).
Consistency training encourages predictions of the DCNNs to be consistent in the results of
the two transformations. For SDA, we merge WDA and a superpixel mixing technique (see
§ 3.3). The consistency loss for optimizing this constraint is denoted as Lcons.

For every experiment, we optimize the loss in the overall framework as the joint loss
L= Lsup +λ ·Lcons, where λ is a weighting hyper-parameter and is set to 1.

3.2 Teacher-Student Framework
To learn from unlabeled images, we follow the teacher-student framework established in [74],
where the teacher network produces pseudo-labels learned from the labeled data and the
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student network is encouraged to be consistent with the teacher. Consistency is encouraged via
cross-entropy loss between the two outputs. In our case, we encourage consistency between
the mixed output labels of a teacher network corresponding to the two unlabelled inputs and
the output label of a student network predicted from the input that resulted by mixing the two
unlabelled images. We explain this approach in details in the following paragraph.

Let gφ represent the teacher network with weights φ and fθ be the student network with
weights θ . For two unlabeled images x1

u and x2
u, we can use the teacher network to generate

pseudo-labels y1
u and y2

u: y1
u = gφ (x1

u) and y2
u = gφ (x2

u). Assume now we are given some
mixing function mix with a mixing parameter m. Without any assumption on the mixing
itself, we denote a mixed output label ym, where ym = mix(y1

u,y
2
u,m). For the same mixing

parameter m, we can also mix the inputs x1
u and x2

u, i.e. xm = mix(x1
u,x

2
u,m). Applying xm to

the student network, we expect fθ (xm) to be the same as the mixed output ym. This is enforced
by minimizing the consistency loss Lcons = CE

(
ym, fθ

(
mix(x1

u,x
2
u,m)

))
, where CE is the

pixel-wise cross-entropy and ym is the mixed pseudo-labels from the teacher.
During training, both the teacher and student networks evolve together. Similarly to [74],

we update the teacher network weights φ after each iteration with an Exponential Moving
Average (EMA), i.e. φ = αφ +(1−α)θ where α = 0.99 is a momentum-like parameter.

3.3 Superpixel-mix for semantic segmentation
To mix two unlabeled images, we use masks generated by sampling superpixels. Superpixels
are local clusters of visually similar pixels. Therefore, a group of pixels belonging to the
same superpixel are likely to be in the same object or the same part of the object. There are
several superpixel variants, including SEEDS [76], SLIC [1] or Watershed superpixels [48].
We opt to use Watershed superpixels as their boundaries retain more salient object edges [49].
We refer the reader to the Supplementary Material for details on how we use the watershed
transformation to produce superpixels.

Given an unlabeled image x1
u, we apply the watershed superpixel algorithm, which results

in a set of n superpixels S = {S1,S2, ...,Sn}. A mixing mask m (which is a binary mask)3 is
created from a sampled subset of superpixels S: m = ∪ j∈σ(k,n)S j where σ(k,n) is a subset of
size k of the n indices, and k is the number of superpixels we want to keep.

The mixing mask m defines the pixels in x1
u which will be replaced by pixels from the

unlabeled image x2
u to form the mixed input xm, i.e. xm = mix(x1

u,x
2
u,m) = (1−m)� x1

u +
m� x2

u, where � is a pixel-wise multiplication. Superpixels are uniformly sampled given a
fixed proportion of selected superpixels. Contrary to existing regularization techniques such
as Cutout [11] or Cutmix [18], our superpixel mixing strategy enforces each set of selected
pixels in the unlabeled image x1

u to belong to the same object. However, the algorithm is
allowed to select a set of superpixel clusters from different objects as illustrated in Figure 1.

We use 200 superpixels per image for all the evaluated datasets. Studies on the number
and proportions of superpixels used in mixing are shown in Section 4.6 and the Supplement.

3.4 From empirical risk to teacher-student mixup
In this section, we show that the training loss of the teacher-student framework in combination
with superpixel-mix data augmentation is bounded by the accuracy of the teacher network and
the quality of the data augmentation. Let D = {(xi,yi)}i ∼ P be the labelled dataset which
follows the joint distribution P and l be a loss between the target y and the prediction fθ (x)

3For simplicity, we overload the notation of the mixing parameter m simply as the mixing mask itself.
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of the DCNN fθ . Typically, in deep learning, the objective is to learn θ that minimizes the
expected risk defined by: RP( fθ ) =

∫
l( fθ (x),y)dP(x,y). As we do not have access to the

distribution P , we optimize the loss function that is formed by the empirical risk on D:

R̂Pδ
( fθ ) =

1
n

n

∑
i=1

l( fθ (xi),yi) =
∫

l( fθ (x),y)dPδ (x,y), (1)

where the summation is converted back to the integral based on Pδ (x,y) =
1
n ∑i=1 δ (x =

xi,y = yi), as shown by [84].
Therefore, we optimize the parameters of the DCNN using the empirical risk. However,

the representation of the discretized data is likely to be sparse, Zhang et al. [84] proposed
to work with Dmix = {(xm,i,ym,i)}i ∼ Pmix

X ,Y where xm,i, and ym,i are the data of D where a
mixing procedure has been applied. The hypothesis in [84] is that the mixing procedure helps
to better approximate the dataset distribution. Let Pmix

δ
denote the discrete distribution of

this augmented dataset. The risk to fit the teacher prediction on Pmix
δ

can then be defined
as: R̂Pmix

δ

( fθ ,gφ ) =
∫

l( fθ (x),gφ (x))dPmix
δ

(x,y). Therefore, our training loss for the overall

framework is defined in detail as the following: L(θ) = R̂Pδ
( fθ )+ R̂Pmix

δ

( fθ ,gφ ). As the
loss l is a norm that satisfies the triangle equality, we can prove that the training loss L(θ) is
bounded by the following:

L(θ)≤ 2RP( fθ )+M(‖Pmix
δ
−P‖1 +‖Pδ −P‖1)+ R̂Pmix

δ

(gφ ), (2)

where the four terms are linked to the true error, approximation error, mixing distribution
error and teacher error, respectively. This implies that the quality of the DCNN is bounded by
the accuracy of the teacher. It is also bounded by how much the mixing strategy can sample
the true distribution of the dataset. Finally, the distribution of the training data with respect
to the true data distribution also plays an important role. This finding can be applied to all
teacher-student frameworks, such as those used in SSL, self supervised training, and domain
adaptation. The detailed proof and analysis is given in the Supplementary Material.
‖Pmix

δ
−P‖1 and ‖Pδ −P‖1 reflect the capacity of the two distributions Pδ and Pmix

δ
to

approximate the true dataset distribution. This bound allows us to control the variation of the
risk. To reduce the risk, we can increase the number of training data or improve the quality
of the data augmentation and so reduce ‖Pmix

δ
−P‖1. This motivates our research on data

augmentation strategies to approximate the true distribution in a data-efficient way. We can
also improve the quality of the teacher using EMA training that stabilizes the training loss.

3.5 Uncertainty and Deep Learning
Consider a joint distribution P over input x and labels y over a set of labels Y . When a DCNN
performs inference, it predicts fθ =P(y|x,θ), where θ is optimized to minimize the loss over
the training set D. This likelihood typically suffers from two kinds of uncertainty [33, 38].
First is aleatoric uncertainty, linked to the unpredictability of the data acquisition process.
During inference, instead of working with x, we may have access to x+n, where n represents
noise on the input data. Second is epistemic uncertainty, linked to the lack of knowledge
of the model, i.e., the weights θ of the network. In addition, the epistemic uncertainty can
be subdivided into two sub-types: one linked to the OOD [52] and the other one linked to
networks’ bias. Epistemic uncertainty models the uncertainty associated with limited sizes
of training datasets. Most works focus only on the ability to detect OOD. In this paper, we
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conduct experiments for all types of uncertainties: aleatoric (i.e., testing models on noisy
data) and two sub-types of epistemic (i.e., OOD detection and models’ bias).

4 Experiments
We conduct experiments on five datasets. First, we study network robustness to epistemic
uncertainty experiments on StreetHazards [32]. The test set contains some object classes that
are not available in the training set. The goal is to detect these out-of-distribution (OOD)
classes. We also evaluate the performance of the DCNNs on an contextually unbiased dataset.
Furthermore, we investigate the networks’ robustness for the aleatoric uncertainty. To this end,
we train a DCNN on Cityscapes [9] and evaluate the performances on Rainy [34] and Foggy
Cityscapes [64]. Finally, we evaluate on the semi-supervised learning task on Cityscapes [9]
and Pascal [12]. We implement the experiments using PyTorch (see Supplementary Material).

4.1 Evaluation criteria
The first criterion we use is the mIoU [36], reflecting the predictive performance of segmenta-
tion models. Second, similarly to [41] we use the negative log-likelihood (NLL), a proper
scoring rule [24], which depends on the aleatoric uncertainty and can assess the degree of
overfitting [25].. In addition, we use the expected calibration error (ECE) [25] that measures
how the confidence score predicted by a DCNN is related to its accuracy. Finally, we use the
AUPR , AUC, and the FPR-95-TPR defined in [31] that evaluate the quality of a DCNN to
detected OOD data. With multiple metrics, we can get a clearer picture on the performance
of the DCNNs with regards to accuracy, calibration error, failure rate, OOD detection. Even
though it is difficult to achieve top performance on all metrics, we argue that it is more
pragmatic and convincing to evaluate on multiple metrics [15, 58] than optimizing for a
single metric, potentially at the expense of many others. For example, a DCNN with a low
accuracy and a low confidence score is well-calibrated. Therefore, evaluating a DCNN on a
single metric such as ECE or mIoU alone is not enough. We aim to have a good compromise
between accuracy and calibration.

4.2 Epistemic uncertainty: Out-Of-Distribution (OOD) Detection
One cause of the epistemic uncertainty in deep learning is the limited training data that does
not cover all possible object classes. The evaluation of this type of epistemic uncertainty
is often linked to OOD detection. Therefore, this experiment is designed to evaluate the
epistemic uncertainty using StreetHazards [32]. StreetHazards is a large-scale dataset that
consists of different sets of synthetic images of street scenes. This dataset is composed of
5,125 images for training and 1,500 test images. The training dataset contains pixel-wise
annotations for 13 classes. The test dataset comprises 13 training classes and 250 OOD
classes, unseen in the training set, making it possible to test the robustness of the algorithm
when facing a diversity of possible scenarios. For this experiment, we use DeepLabv3+ [7]
with the experimental protocol from [32]. We use ResNet50 encoder [28]. For this experiment,
we compare our algorithm to Deep Ensembles [41], BatchEnsemble [79], LP-BNN [17],
TRADI [16] , MIMO [27] achieving state-of-the-art results on epistemic uncertainty. We
also compare our model with MCP which is the baseline DCNN where we consider the
maximum probability class as a confidence score, and with Cutmix [18] strategy. The results
in Table 1 show that our method is the only one to have the best results in three out of five
measures. Running up, Deep Ensemble and LP-BNN achieve best results on one measure
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Dataset OOD method mIoU ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓ # Forward passes ↓

StreetHazards
DeepLabv3+

ResNet50

Baseline (MCP) [31] 53.90% 0.8660 0.0691 0.3574 0.0652 1
TRADI [16] 52.46% 0.8739 0.0693 0.3826 0.0633 4
Cutmix [18] 56.06% 0.8764 0.0770 0.3236 0.0592 1
MIMO [27] 55.44% 0.8738 0.0690 0.3266 0.0557 4
BatchEnsemble [79] 56.16% 0.8817 0.0759 0.3285 0.0609 4
LP-BNN [17] 54.50% 0.8833 0.0718 0.3261 0.0520 4
Deep Ensembles [41] 55.59% 0.8794 0.0832 0.3029 0.0533 4
Superpixel-mix (ours) 56.39% 0.8891 0.0778 0.2962 0.0567 1

Table 1: Comparative results on the OOD task for semantic segmentation. Results are averaged
over three seeds.

Figure 2: A qualitative example of the network bias study. When the road and pavements are replaced
with sand texture, the baseline supervised network makes wrong segmentations. There is still pavement
segmentation due to the association with people. Superpixel-mix produces better results without the
wrong pavement segmentation, also provides a clean segmentation for the sand texture.

only. Moreover, our method achieves the best results faster than Deep Ensemble and LP-BNN,
we only need one inference pass compared to 4 inference passes for the others.

4.3 Epistemic uncertainty : Unbiased experiment
The second aspect of epistemic uncertainty is related to network biased caused limited samples
and diversity of scenarios, e.g., certain objects always co-occur in the training data. Here,
we evaluate the epistemic uncertainty under the lens of model bias. In urban datasets such
as Cityscapes, road and car pixels appear most of the time together, raising the question of
co-occurrence dependency between objects. If two objects are dependent, then the network
will likely fail when the car object is encountered in different context other than roads. Shetty
et al. [67] study object dependency and suggest using GANs to remove one object by in-
painting and training the network for the new contexts. Their results show that a network that
is less biased towards the co-occurrence dependency yields better accuracy for segmentation.

To measure the bias of our superpixel-mix method, we create a new dataset dubbed
Out-of-Context Cityscapes (OC-Cityscapes), by replacing roads in the validation data of
Cityscapes with various textures such as water, sand, grass, etc. Example images are shown
in the Supplementary Material. Studies in [21] show that DCNNs are biased towards texture.
By replacing different textures for roads, we test the trained networks on these new context
images and evaluate the bias level for each network.

In Table 2, we show the performances of the fully supervised network (baseline) and our
network trained using the superpixel-mix method for the Cityscapes validation set and our
generated dataset. The results are mIoU, ECE, and NLL scores averaged over 3 runs for
classes that are not road. On our experimental dataset, the baseline’s performance drops by
21.97% while Superpixel-mix drops by 19.83% for the mIoU metric. The results also show
that Superpixel-mix produces a less biased model for co-occurring objects with the best scores
on mIoU and NLL measures. Superpixel-mix changes the image context while preserving
object shapes, effectively regularizing the model to address shortcut learning, i.e., overfitting
on the co-occurrence of objects and their typical contexts. For a visual example, see Figure 2.
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Evaluation data Cityscapes OC-Cityscapes Cityscapes OC-Cityscapes Cityscapes OC-Cityscapes
mIoU mIoU NLL NLL ECE ECE

Baseline (MCP) [31] 76.51% 54.54% -0.9456 -0.7565 0.1303 0.2162
Cutmix [18] 78.37% 54.78% -0.955 -0.7435 0.1365 0.2587
MIMO [27] 77.13% 55.87% -0.9516 -0.7431 0.1398 0.2359
Deep Ensembles [41] 77.48% 57.09% -0.9469 -0.7613 0.1274 0.1968
Superpixel-mix (ours) 78.99% 59.16% -0.9563 -0.7768 0.1348 0.2244

Table 2: Comparative results for network biases on OC-Cityscapes. The results are segmentation
mIoU, NLL and ECE, for classes that are not road. The baseline is the result from supervised training.

Evaluation data Cityscapes Rainy Cityscapes Foggy Cityscapes Cityscapes-C
mIoU ↑ ECE ↓ NLL ↓ mIoU ↑ ECE ↓ NLL ↓ mIoU ↑ ECE ↓ NLL ↓ mIoU ↑ ECE ↓ NLL ↓

Baseline (MCP) [31] 76.51% 0.1303 -0.9456 58.98% 0.1395 -0.8123 69.89% 0.1493 -0.9001 40.85% 0.2242 -0.7389
Cutmix [18] 78.37% 0.1365 -0.9550 61.86% 0.1559 -0.8200 73.57% 0.1484 -0.9289 39.16% 0.3064 -0.6865
MIMO [27] 77.13% 0.1398 -0.9516 59.27% 0.1436 -0.8135 70.24% 0.1425 -0.9014 40.73% 0.2350 -0.7313
BatchEnsemble [79] 77.99% 0.1129 -0.9472 60.29% 0.1436 -0.7820 72.19% 0.1425 -0.9132 40.93% 0.2270 -0.7082
LP-BNN [17] 77.39% 0.1105 -0.9464 60.71% 0.1338 -0.7891 72.39% 0.1358 -0.9131 43.47% 0.2085 -0.7282
Deep Ensembles [41] 77.48% 0.1274 -0.9469 59.52% 0.1078 -0.8205 71.43% 0.1407 -0.9070 43.40% 0.1912 -0.7509
Superpixel-mix (ours) 78.99% 0.1348 -0.9563 61.87% 0.1583 -0.8207 74.39% 0.1411 -0.9266 42.58% 0.2338 -0.7513

Table 3: Aleatoric uncertainty study on Cityscapes-C, Foggy Cityscapes [34] and Rainy Cityscapes [64].

4.4 Aleatoric uncertainty experiments
Aleatoric uncertainty is associated with unpredictability of the data acquisition process that
causes various noises in the data. In the following experiments we evaluate the aleatoric
uncertainty of DCNNs trained on normal images (e.g., normal weather images) when facing
test images with various types of noise (e.g., rainy or foggy environments). In semantic
segmentation, the DCNN must be robust to aleatoric uncertainty. To check that, we use the
rainy [34] and foggy Cityscapes [64] datasets, which are built by adding rain of fog to the
Cityscapes validation images. The goal is to evaluate the performance of DNNs to resist these
perturbations. We further generate an additional Cityscapes variant with images modified
with different perturbations and intensities to mimic a distribution shift [30]. We apply the
following perturbations: Gaussian noise, shot noise, impulse noise, defocus blur, frosted,
glass blur, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic, pixelate,
JPEG. For more information, please refer to [30]. We call this dataset Cityscapes-C.

To measure the robustness under aleatoric uncertainty, we compute ECE, mIoU and
NLL scores averaged over 3 runs. Table 3 shows results close to the state of the art. DE
reaches good results, yet this approach needs to train several DCNNs, so it is more time-
consuming for training and inference. In the Supplementary Material, we report mIoU scores
of different approaches for the different levels of noise. Overall, our experiments indicate that
Superpixel-mix tends to be robust to high level of noise.

We note that our method does not achieve the top ECE scores across the various perturba-
tions and weather conditions in these experiments. However, none of the considered strong
baselines based on ensembles outperforms the others consistently either due to the difficulty
and diversity of the considered test sets. Superpixel-mix achieves competitive ECE scores
and is a top performer on mIoU and NLL.

4.5 Semi-Supervised Learning experiments
To evaluate the robustness of our method to missing annotation, we tested our approach on a
semi-supervised learning task on two datasets: Cityscapes [9] and Pascal VOC 2012 [12]. We
follow the common practice for this task from prior works [18, 35] and use DeepLab-V2 [6]
model with ResNet101 [28] encoder pre-trained on ImageNet [10] and MS-COCO [46]. The
weights of both the teacher and student models are initialized the same manner. We evaluate
our method and compare with existing methods using three sets of labeled data: 1/30 (100
images), 1/8 (372 images) and 1/4 (744 images). Our results are reported as average mIoU of
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Labeled samples 1/30 (100) 1/8 (372) 1/4 (744)

Adversarial [35] - 58.80% 62.30%
s4GAN [54] - 59.30% 61.90%
Cutout [11] 47.21% ± 1.74 57.72% ± 0.83 61.96% ± 0.99
Cutmix [18] 51.20% ± 2.29 60.34% ± 1.24 63.87% ± 0.71
Classmix [57] 54.07% ± 1.61 61.35% ± 0.62 63.63% ± 0.33
Classmix [57] 54.07% ± 1.61 61.35% ± 0.62 63.63% ± 0.33

Baseline(*) 43.84% ± 0.71 54.84% ± 1.14 60.08% ± 0.62
Superpixel-mix (ours) 54.11% ± 2.88 (↑ 7.27%) 63.44%± 0.88 (↑ 8.60%) 65.82%± 1.78 (↑ 5.74%)

Table 4: Evaluation in the semi-supervised learning regime on Cityscapes. We report mIoU
scores as mean± std.dev computed over 12 runs. The (↑) shows the improvement of our methods
over the baselines. (*) The baselines are from [57] as we use a similar base procedure.

superpixels algorithm Watershed [48] SLIC [1] Felzenszwalb [14]
mIoU 78.99 % 78.89% 77.99%

Table 5: Ablation study results over influence of different superpixel techniques. We report
mIoU scores for semantic segmentation on Cityscapes.

12 runs (4 times on each of 3 official splits) as well as the standard deviation. The results are
shown in Table 4. We present results on Pascal dataset in the Supplementary Material.

4.6 Ablations and analysis
We perform various ablations to understand the influence of different hyper-parameters and
choices in our algorithm. First, we vary the number of superpixels extracted per image from
20 to 1,000. The results (in Table 5, Supplement) show that our method achieves the highest
mIoU on Cityscapes when the number of superpixels per image is from 100 to 200. Secondly,
we study the proportion of chosen superpixels for mixing over the total number of superpixels
per image. The proportion ranges from 0.1 to 0.9. We find that the results vary little across all
the proportion values (Table 6, Supplement). The best mIoU is obtained at the proportion
value of 0.6. Finally, we study the influence of different superpixel techniques to generate
mixing masks: Watershed [48], SLIC [1], and Felzenszwalb [14]. The results in Table 5 show
that on Cityscapes segmentation the performance of Superpixel-mix is relatively stable across
superpixel methods, with Watershed yielding the best mIoU score.

5 Conclusions
Superpixel-mix data augmentation is a promising new training technique for semantic segmen-
tation. This strategy for creating diverse data, combined with a teacher-student framework,
leads to better accuracy and to more robust DCNNs. We are the first, to the best of our
knowledge, to successfully apply the watershed algorithm in data augmentation. What sets
our data augmentation technique apart from existing methods is the ability to preserve the
global structure of images and the shapes of objects while creating image perturbations. We
conduct various experiments with different types of uncertainty. The results show that our
strategy achieves state-of-the-art robustness scores for epistemic uncertainty. For aleatoric
uncertainty, our approach produces state-of-the-art results in Foggy Cityscapes and Rainy
Cityscapes. In addition, our method needs just one forward pass.

Previous research in machine learning has established that creating more training data
using data augmentation may improve the accuracy of the trained DCNNs substantially. Our
work not only confirms that, but also provides evidence that some data augmentation methods,
such as our Superpixel-mix, help to improve the robustness of DCNNs by reducing both
epistemic and aleatoric uncertainty.
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