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Abstract
Represented in a Morphable Model, 3D faces follow curved trajectories in face space as they age. We present a
novel algorithm that computes the individual aging trajectories for given faces, based on a non-linear function
that assigns an age to each face vector. This function is learned from a database of 3D scans of teenagers and
adults using support vector regression.
To apply the aging prediction to images of faces, we reconstruct a 3D model from the input image, apply the aging
transformation on both shape and texture, and then render the face back into the same image or into images of
other individuals at the appropriate ages, for example images of older children. Among other applications, our
system can help to find missing children.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques–Interaction techniques I.4.10 [Image Processing and Computer Vision]: Image Representation–
Hierarchical, Multidimensional, Statistical J.m [Computer Applications]: Miscellaneous–Forensic Sciences

1. Introduction

Police investigators who search for children that have been
missing for several years have to predict the children’s cur-
rent looks from images taken at an earlier age. Today, much
of this work is done by forensic artists, based on their experi-
ence and artistic skill. In order to simplify and automate this
task, we present a method that learns from a large dataset of
3D scans of faces how children grow, and applies this trans-
formation to 3D faces and to images.

In our approach, individual faces are represented as face
vectors in a 3D Morphable Model of faces [BV99]. Over the
years, each face will transform along a curved trajectory in
this high-dimensional space. Ideally, we would like to mea-
sure these trajectories in a longitudinal study with a dense
set of time samples of a number of individuals. We could
then transfer the aging trajectories to new individuals. How-
ever, such data are difficult to collect, so we are facing a
significantly more difficult problem: Given a database that
contains one single scan for each individual, plus the age of
each person, predict the effect of aging on novel faces. This
involves two challenges: (1) Learn how an individual face
would change over time (non-linear dependency on time),

and (2) learn how the change depends on the individual face
of the person (non-linear dependency on the position in face
space).

To solve this learning problem, we proceed in two steps:
we learn the function that assigns an age value to each face
vector, and compute individual aging curves to obtain new
face vectors at given ages.

This strategy has been proposed in an entirely linear ap-
proach [BV99], where a linear regression has been applied
to describe facial attributes, such as gender or body weight,
from individual, annotated scans. Then, the gradient of this
function was used to change the attributes. The rationale be-
hind this was that the gradient defines the shortest path, i.e.
the minimal change necessary to obtain the desired attribute
value. It has been shown that the computation of the gradient
depends critically on the scalar product [BV99, BAHS06],
and that PCA-based Mahalanobis-distance is more appropri-
ate than a simple L2 norm in shape or texture space.

If a linear age function is used, the constant gradient will
shift all faces along the same, straight trajectory as they age.
In contrast, the algorithm described here is based on a non-
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Figure 1: The example shows a picture of an 11 year old girl (A). We reconstructed a 3D model of her face by fitting the
Morphable Model to her face (B). Our growth algorithm then transformed the 3D face into a face at an appropriate target age
(here: 17 years) (C). Finally we rendered the age progressed 3D face into an arbitrary background image (here: the ground-truth
image was chosen as background) (D). For comparison, (E) shows a real picture of the girl at the target age.

linear age function. Aging curves are computed by following
the gradient of this function, which involves solving a differ-
ential equation using Runge-Kutta integration. As a result,
aging trajectories depend in a non-linear way both on the
age and on the individual face.

We embed our 3D aging transformation in a Mor-
phable Model framework that includes 3D shape reconstruc-
tion from images, using an analysis-by-synthesis approach
[BV99], and a method for inserting faces into existing im-
ages [BSVS04]. These two elements are necessary for the
typical setting in forensic applications: The image material
of missing children is usually only a set of snapshots at ran-
dom imaging conditions, so the algorithm has to be very ro-
bust in terms of input data. On the other hand, it is useful
to be able to render predicted faces into pictures of other
children at the current age of the missing child to maintain
consistent age of the face and the rest of the body. More-
over, the system that we propose can produce images with
different hairstyles.

In summary, the contributions of this paper are:

1. Non-linear aging curves, which capture the different
phases of growth and aging of facial tissue,

2. Individual aging effects, which may distinguish, for
example, between the aging of obese and skinny faces,

3. A general approach for both 3D models and 2D images,
and

4. The method is applicable to images at any given pose and
illumination. This is a crucial feature for most real-world
applications, such as police work where only a limited set
of snapshots of the missing children’s faces are available.

2. Related Work

In the image domain, the first algorithms for aging faces
were developed in the early 80s [TMSP80, BS81]. In the
work of Burt, Rowland and Perrett [BP95, RP95], database
images are warped for 2D registration, based on the loca-
tions of feature points. Then, average faces of two different
age groups are computed, and the difference warp field and
color change is applied to novel faces. In 2001 this method
was extended such that the textures of faces are represented
in a wavelet pyramid. By manipulating their wavelet magni-
tudes locally, one may enhance edges and wrinkles and map
them to new faces to simulate effects of aging. [TBP01]

Scandrett et al. present a semi-automatic 2D approach
where a PCA is applied to a set of photographs of faces. Dif-
ferences in pose up to 30◦are compensated and average ag-
ing trajectories are computed based on statistical measures.
Two different age progression algorithms are proposed: a
linear and a piecewise method. The piecewise algorithm may
also involve average developmental trends and consider fa-
milial correlations, if available. In contrast to our work some
of the statistics rely on information gained from several pic-
tures of one individual at previous ages. [SSG06b]

In a 2D Active Appearance Model and a dataset of age
progressive images of 45 individuals, Lanitis et al. [LTC02]
explored linear, quadratic and cubic age functions. Interme-
diate ages of these faces were generated by computing ran-
dom face vectors in the region of interest, estimating their
age and averaging groups that have the same age. For simu-
lating the aging of novel faces, they searched for the nearest
neighbour in the database and used the aging curve of that
face, or they formed a weighted sum of curves of similar
faces. The system is restricted to frontal views.
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Figure 2: The figure shows different example faces of our database (from left to the right). Each face is transformed along its
individual non-linear aging trajectory. Individual characteristics of the faces are retained by the age transformation.

For three-dimensional faces, learning facial attributes
from 3D scans of faces and attribute values, such as gen-
der or body weight, has been achieved with a linear method
in the context of 3D Morphable Face Models [BV99]. Re-
cently, several new PCA-based methods have been presented
[SSG06a, HSG04]. Wang et al. proposed a non-linear multi-
resolution method to extract and transfer subtle expression
details of individuals [WHL∗04]. Discriminating character-
istics of a person’s expression style may be used to synthe-
size new expressions. In a different approach, the growth of
faces was predicted from anthropometric measurements of a
sparse set of landmark points [KHYS02, Ram06]. For older
faces, wrinkles are an important age cue that has been con-
trolled by a number of techniques [LWMT99, WKMMT99,
KHYS02].

On a 3D model, Hutton proposed a non-linear aging tra-
jectory that was computed by fitting a single smooth curve
to the faces at different ages [Hut04, HBHP03]. Each point
of this curve is a weighted sum of the input faces (kernel
smoothing), and it reflects the aging trajectory of an aver-

age face. The same curve is then applied to all individual
faces. Hutton also performed support vector regression for
predicting the age of novel faces. In our paper, we go be-
yond that by presenting an algorithm that employs support
vector regression for the simulation of aging. For age esti-
mation, a number of other methods have been proposed re-
cently, which are not closely related to our Support Vector
Regression approach [LDC04, GZZ∗06].

For capturing individual differences in facial expressions,
multilinear models use a tensor representation that pro-
vides separate model parameters for identity and expression
[VT02, VBPP05]. Given a new face, the multilinear model
can predict the person’s facial expressions. For aging, how-
ever, a straight-forward transfer of the multilinear approach
would not be able to produce curved aging trajectories, so
the same change of facial features would be applied over
the entire interval of ages that are studied. In contrast, our
approach captures individual differences and non-linear tra-
jectories at the same time.
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Figure 3: Processing steps to generate age progressed images of a face: reconstructing the 3D shape and texture from a single
image of a child leads to a 3D face model. By following its individual age trajectory in face space, we transform the face to an
older age (bottom row). Rendering the results into different images of the same person in its actual age allows us to compare
the result with the actual appearance of the face (ground-truth, top row).

Beyond a certain age, aging of faces involves the increase
of high spatial frequency structures such as wrinkles. In a re-
cent study based on high-resolution scans, a local statistical
model simulates aging of adult faces by adapting the statis-
tics of the face to the target age [GMP∗06]. In our paper, we
restrict ourselves to lower spatial frequency effects and to
facial growth of children and young adults.

3. A Morphable Model of Faces

The Morphable Model of 3D faces [VP97, BV99] provides
a powerful representation for faces, but it is also used for
model-based registration and for 3D shape reconstruction in
our system. In the Morphable Model, faces are represented
by shape vectors S and texture vectors T such that each linear
combination of different faces is a new, realistic face

S =
m

∑
i=1

aiSi, T =
m

∑
i=1

biTi (1)

within a few standard deviations from the average. The com-
ponents of S and T are the 3D coordinates and RGB texture
values of the vertices of a polygon mesh,

S = (x1,y1,z1,x2, . . . ,xn,yn,zn)
T (2)

T = (R1,G1,B1,R2, . . . ,Rn,Gn,Bn)
T
. (3)

In our model, n = 75972. To make sure that the linear com-
binations do not blend features of faces on different loca-
tions of the surface, it is essential to establish point-to-point
correspondence between all vectors, so a given vector com-
ponent describes the same point of the face in each face vec-
tor. In an initial model of 200 adult faces, this correspon-

dence has been computed automatically with an optical flow
algorithm [BV99]. The multiple, incomplete surface scans
of each face described in this paper required a more robust
method which is described in Section 6.

In order to reduce the dimensionality of the subsequent
learning problem, we perform a Principal Component Anal-
ysis PCA on the shape and texture vectors. This defines an
orthogonal set of basis vectors si, ti, and with the average
shape s and texture t, we can define shape and texture coef-
ficients cs

i , ct
i such that

S = s+
m

∑
i=1

cs
i · si, T = t+

m

∑
i=1

ct
i · ti. (4)

For the simulation of aging in teenagers, we relied on two
datasets. One is a set of 200 adult faces recorded with a Cy-
berware PS3030 scanner [BV99]. The other is a set of 238
scans of teenager faces that we acquired with a new setup
and processing pipeline that we describe in Section 6.

4. Predicting the Age of Faces

Before we can actively change the age of 3D faces with our
algorithm, we have to learn the function f : IRk

→ IR that
maps any face x to a scalar age value. In the following, let
x be either shape coefficients (cs

1, ...,c
s
k)

T , k ≤ m, or texture
coefficients (ct

1, ...,c
t
k)

T . To reduce the computational com-
plexity of the learning problem, we do not use all princi-
pal components, but experiment with values k = 20,40,80,
which can be justified by the fact that most changes of the

c© The Eurographics Association and Blackwell Publishing 2007.
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Shape Texture

20 PCs 40 PCs 80 PCs 20 PCs 40 PCs 80 PCs
RBF −SV R 38.90 36.33 33.26 29.35 28.24 30.66 msEcross

linear 67.66 67.53 64.55 62.87 58.53 55.36 msEcross

RBF −SV R 32.68 14.90 11.83 18.12 12.15 2.28 msEtrain
linear 66.14 58.30 45.43 60.05 50.85 39.59 msEtrain

Table 1: Mean squared generalization- and training errors (in months) on a data set of 393 faces aged between 95 and
360 months. Regression was performed on 20,40 and 80 principal components, respectively. The generalization errors were
obtained by cross-validation with 39 randomly chosen test samples. The training error resulted from training and testing with
the complete data set.

LINEAR REGRESSION

120 145 170 195 220 245 270 295 320 345 370

RBF SUPPORT VECTOR REGRESSION

Figure 4: Linear and non-linear age progression for 80 principal components. We show the comparison for face 3 of Figure 2
in the range of 120 to 370 months. The subtle differences between the two curves are difficult to see. On the original face, the
age estimation error was less than one month, while the linear estimation was 18 months off in shape, and 9 months in texture.

overall face shape are found in the first principal compo-
nents.

To learn the age function, we use non-linear Support Vec-
tor Regression [Vap95, SS02] on training sets of l pairs
(xi,yi), i = 1, ..., l with yi denoting the age of each example
face i. As kernel functions, we use RBF kernels and poly-
nomials. On our data, the regression results are consistently
better for RBF than for polynomials, so we will only refer
to RBF kernels in the rest of this section. The support vector
regression function for RBF kernels is given by

f (x) =
l

∑
i=1

αi · yi · e
−γ·‖xi−x‖2

+b (5)

αi and b are real numbered values that are determined by
support vector training.

We use the LIBSVM implementation for ε-Support Vec-
tor Regression [CL01], and perform grid search using cross-

validation on the training sets to find the optimal parameters,
such as the width γ of the RBF kernel.

We trained and evaluated the regression functions sepa-
rately on shape and on texture coefficients, using 20, 40 and
80 principal components. The evaluation is done on the com-
bined dataset of teenagers and adults, but without any faces
older than 30 years, because our data set contains only a few
sparse examples in that age, and errors on these faces would
mask the effects in the age period that we are interested in.
The dataset, therefore, contains 393 persons aged between
95 and 360 months. For comparison, we also perform lin-
ear regression with a straight-forward least squares fit. Table
1 shows training errors on the full dataset, and generaliza-
tion errors obtained by cross validation. In cross validation,
we split the dataset in 11 different random ways into 90%
training and 10% test faces to measure the performance on
previously unseen faces.

Both in terms of training error and in generalization per-
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Figure 5: Projected into the space of the last 3 out of 20
principal components, the curvature of the age trajectories
(blue curves) is clearly visible.

formance, the Support Vector function is superior to the lin-
ear function. The training error shows that the non-linear
function can be adapted to the given data more closely than
the linear function, and the generalization shows that is does
not suffer from overfitting, but produces an appropriate esti-
mate of the true age function.

The results indicate that there is a significant non-linear
component in the age function, and therefore a simple linear
transformation of faces in aging simulation will not capture
all of the aging effects found in the database. We use the
superior performance of the Support Vector regression as a
motivation to rely on this function for the computation of
aging trajectories.

5. Aging Trajectories

The main idea of the novel algorithm that we present in this
paper is that the aging trajectory z(t) should be parallel to
the gradient of the age function f (x) at each moment in time,
and that it should pass through the starting vector x0, so we
are looking for a function z : IR → IRk such that at any age t

dz
dt

(t) = ∇ f (z(t)), (6)

with the starting condition

z(t0) = x0, (7)

where x0 is the starting face at an age t0. This defines a fam-
ily of individual trajectories zx0,t0(t). The motivation of (6)
is that for all x and t the gradient of f describes the direction

of minimal change in x to achieve a given change in age t,
so the characteristic features of the face are retained in the
best way possible. This criterion has been applied success-
fully with linear functions f and attributes such as gender
and body weight [BV99, BAHS06].

In order to compute zx0,t0(t), we have to integrate the
differential equation (6). We do this by a fourth order
Runge-Kutta algorithm [PTVF92], which is the most widely
used integration algorithm. Runge-Kutta integration per-
forms small steps along the gradient ∇ f in an interleaved
manner. ∇ f can be computed from the regression function
(5):

∇ f (x) = 2 · γ ·
l

∑
i=1

αi · yi · e
−γ·‖xi−x‖2

· (xi −x) (8)

Figure 5 visualizes some of the simulated age trajectories
(blue) in shape space. We selected a set of principal compo-
nents (coordinate axes in Figure 5) that shows the curvature
of the trajectories. In the first principal components, the tra-
jectories look almost straight.

Given a face x0, we can now compute the face vector for a
target age ttarget . Let test = f (x0) be the estimated age of the
starting face. Then we have to simulate the trajectory along
a time period ∆t = ttarget − test to find the predicted face
zx0(ttarget). In some cases, the true age t0 of the starting face
may be known, and in general, this will be slightly different
from test . To resolve this conflict, we simulate the intended
time period ∆t = ttarget − t0 and compute zx0(test + ∆t). The
justification for this is that the starting face may have looked
younger or older than it really was, and we may assume a
continued aging process rather than stagnation, which could
be the result if we would insist on the correctness of f and
output zx0(ttarget).

In order to investigate the non-linear components in
zx0,t0(t), consider the angles between gradients of f in dif-
ferent positions in face space (Table 2). The first row lists
the mean angles ]

(

∇ f (xi),∇ f (x j)
)

between the support
vector gradients for all pairs of training data. The results,
which were measured on the same dataset as in Table 1, in-
dicate that the proposed system generates different trajec-
tories for different faces, so it does capture the individual
variation in aging. The second row lists the mean angles
](∇ f (xi),∇lin) between the gradients at the training data
and the constant gradient of the linear estimation, demon-
strating that the trajectories using Support Vector regression
deviate considerably from the simple linear approach.

The third row in Table 2 gives the internal angles
](∇ f (xstart),∇ f (xend)) between the tangent vectors in the
starting and end points (ages 95 and 360 months) of each in-
dividual trajectory zx0,t0(t). The angles show that the trajec-
tories are curved, as we expected. Although the trajectories
straighten with increasing numbers of principal components,
they still go beyond a linear regression approach.
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Figure 6: The final texture of each facemodel consists of three separately acquired texture images. By fitting the 3D Morphable
Model to each texture image consecutively, three illumination corrected textures are extracted. Combining them and mapping
them to the reconstructed shape of the same face yields the final face model.

Shape Texture

20 PCs 40 PCs 80 PCs 20 PCs 40 PCs 80 PCs
]

(

∇ f (xi),∇ f (x j)
)

15.7◦ 22.5◦ 9.1◦ 33.5◦ 21.2◦ 14.8◦

](∇ f (xi),∇lin) 56.6◦ 49.4◦ 38.3◦ 55.0◦ 46.4◦ 37.2◦

](∇ f (xstart),∇ f (xend)) 10.3◦ 10.9◦ 4.0◦ 30.0◦ 12.7◦ 6.2◦

Table 2: 1st row: Mean angles between gradients ]
(

∇ f (xi),∇ f (x j)
)

in all pairs (xi,x j) of training samples. 2nd row: Mean
angles ](∇ f (xi),∇lin) between gradients of the non-linear and the linear function. 3rd row: Mean angles ]

(

∇ f (xi),∇ f (x j)
)

between tangents in the start- and end points of 30 age trajectories. The training set consisted of 393 faces represented by 20,
40 and 80 principal components, with ages between 95 and 360 months.

Figure 4 shows an example face, transformed along the
linear and the non-linear trajectory. The visual differences
between the curves are quite subtle. Based on the theoretical
background and the precision of age predictions (Table 1),
we can argue that the non-linear trajectory captures more of
the true effects of facial growth.

6. A Database of 3D Scans of Teenagers

As we have mentioned above, the dataset of 200 adult faces
was augmented by 3D scans of of 238 teenager faces, cover-
ing an age range from a minimum age of 96 months (8 years)
to a maximum age of 191 months (almost 16 years). Among
them, 125 were male faces, and 113 were female faces.

In a mobile setup that we operated at schools, we used
Konica Minolta VI-910 laser scanners to record textured
depth maps from different viewing angles. For each face,
we recorded three partial 3D laser scans, each showing the
face from a different viewing angle (0◦, 35◦and −35◦) at

a resolution of 76 800 vertices per scan (320×240). Unlike
the cylindrical measurements by the stationary Cyberware
PS3030 scanner, however, we had to combine the separate
scans to a single surface.

For processing the individual scans, we fit the 3D Mor-
phable Model of adults to the facial surface. We modified an
algorithm that was previously described in [BV99] for cylin-
drical scans such that it operates on the depth maps provided
by the Minolta scans. The fitting algorithm minimizes the
difference in depth and texture between the linear combina-
tion of shapes (Equation (4) and the depth map of the scan.
The result, in our case, is a best fit of the adult face model to
each new scan. The model fitting establishes point-to-point
correspondence to the Morphable Model, so we can form
new shape and texture vectors by sampling the scans at each
vertex of the reconstructed surface. For those parts of the
face that were visible to the Minolta scanner, we replace the
best-fit vertex position by the precise scan data, while all oth-
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K. Scherbaum M. Sunkel H.-P. Seidel & V. Blanz / Prediction of Individual Non-Linear Aging Trajectories of Faces

Figure 7: Once a face is transformed to another age, it can be rendered into arbitrary images. This method allows us to apply
different haircuts to a face.

ers remain at the estimated best-fit position. To combine the
different scans of the same face, we form a weighted sum of
vertex positions wherever more than one scan direction gives
a valid measurement. Vertices of the Morphable Model that
are visible in none of the scans, for example holes or edges
near the ears or on the neck, remain at the best-fit position.

To improve the resolution of the textures, we took digital
images of the children. By fitting the model to these images
and extracting the texture [BV99], we obtained a high res-
olution texture from each image. The fitting algorithm finds
the linear combination of shape and texture vectors (Equa-
tion (4)), the rigid parameters of 3D pose and the parameters
of illumination such that a synthetic image of the face model
is as similar as possible to the input image [BV99]. After fit-
ting, the color of each vertex is sampled in the images, and
illumination effects are compensated automatically.

From the photographs taken of each person, we select a
frontal view and a side view from 45 ◦to the left and right, re-
spectively. The 3D reconstruction algorithm is applied to all
3 images separately. Each texel from each view is assigned
a weight value that is computed according to the following
scheme: If the point is occluded or if the angle φ between
the viewing direction and the surface normal is larger than
φ1 = 80◦, then the weight is w = 0. If φ < φ2 = 40◦, w = 1.
In the interval between, the function

w =
1
2
(1+ cos(

φ−φ2
φ1 −φ2

·180◦)) (9)

generates a continuous and smooth transition (Figure 6).

In a first step, the weights w are used in each view sepa-
rately to combine the texture values extracted from the image
with the value estimated by the fitting algorithm based on
the linear combination of examples. The second step com-
bines the textures from the 3 views with these weights. If

all 3 weights are 0 in a texel, which means that all 3 tex-
tures are based on the best fit value only, these texture values
are weighted equally. Figure 2 shows examples of aging 3D
scans taken from our new database of face models.

7. Application to Image Data

In most applications, 3D scans of children whose age has to
be changed are not available, so it is essential to be able to
run the algorithm on image data. Moreover, the desired out-
put of a system would not be an isolated 3D face mesh, but
an image of a child in a new scene context. Our framework
accounts for both aspects of the problem.

In order to reconstruct a 3D face from an image, we use
the model-based algorithm [BV99] that was mentioned in
the previous section, which estimates shape, texture and all
relevant scene parameters. For the reconstructed face, the
age trajectory can be computed.

For rendering the modified face into a novel target image,
we rely on the fact that the scene parameters are estimated by
the fitting algorithm [BSVS04]. The user runs the fitting al-
gorithm also on the target image, and obtains the appropriate
pose and illumination parameters that he needs for rendering
the age-transformed face into the image. The rigid alignment
of faces within the Morphable Model and the consistent il-
lumination of the scans makes sure that we can exchange
faces in this way. Examples of aging in images are shown in
Figure 1, 3, 7 and 8.

Being able to render the age-transformed face into new
images makes it possible to account for the growth of the
rest of the body as well as potential changes in hairstyle
and in the environment. We simply render the face into a
photo of another child at the target age. By rendering the
age-transformed face into images of children with different
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Figure 8: The example shows a picture of a 2 year old boy (A). We reconstructed a 3D model of his face by fitting the Morphable
Model to his face (B). Our growth algorithm then transformed the 3D face into a face at an appropriate target age (here: 16
years) (C). Finally we rendered the age progressed 3D face into an arbitrary background image (here: the ground-truth image
was chosen as background) (D). For comparison, (E) shows a real picture of the boy at the target age.

hairstyles, our system generates a variety of possible appear-
ances (Figure 7).

8. Conclusion

We have addressed the problem of aging in a very general
setting: From training data that contain no longitudinal mea-
surements, we estimate how aging of faces depends both on
age and on the individual face, and we apply our synthetic
aging to images at any given pose and illumination.

A straight-forward application of our method is in law en-
forcement, where missing children can be found based on
their predicted facial appearance. Our system supports the
work of forensic artists in this field by providing a solid em-
pirical ground for altering the features of faces, due to the
example-based approach.

Additional applications are in the fields of character de-
sign, animation and morphing for special effects. Moreover,
the system can be a high-level tool for image processing.
Both the processing of scan data after acquisition, and the
application of the algorithm to images of children are mostly
automated, making the framework easy and convenient to
use. Manual interaction is reduced to clicking a small num-
ber of feature points. This may be an important factor in any
future deployment of the system.

In the best case, the prediction made by our algorithm can
only give the most likely image of what a child may look like
in the future. Environmental factors, such as nutrition, expo-
sure to sunlight or physical activity contribute to the devel-
opment of the face. Diseases, injuries or psychological stress
may also leave visible traces. In addition to these factors, it

may well be that some genes start to determine the visual ap-
pearance only at a certain age without having influenced the
face before. Some of these latent genetic dispositions can be
observed in images of parents or other relatives. Within the
system presented in this paper, it is easy to import features
from photographs of parents after a 3D reconstruction.

Even though linear models are still an appropriate basis in
many fields of learning-based graphics, in particular if only a
small set of training data are available, new non-linear have
a tremendous potential to capture all the mutual dependen-
cies between parameters in an elegant and unified theoretical
framework.
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